論文の概要: Performance of Gaussian Mixture Model Classifiers on Embedded Feature Spaces
- arxiv url: http://arxiv.org/abs/2410.13421v1
- Date: Thu, 17 Oct 2024 10:43:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:19:41.652062
- Title: Performance of Gaussian Mixture Model Classifiers on Embedded Feature Spaces
- Title(参考訳): 埋め込み特徴空間上のガウス混合モデル分類器の性能
- Authors: Jeremy Chopin, Rozenn Dahyot,
- Abstract要約: CLIPとImageBindによるデータ埋め込みは、マルチメディアおよび/またはマルチモーダルデータの分析に強力な機能を提供する。
本稿では,Gaussian Mixture Model (GMM) ベースの層を標準のSoftmaxレイヤの代替として利用して,それらの性能を分類するために評価する。
その結果,GMMの1つのガウス成分が各クラスを捕捉するのに十分である場合が多く,これらの組込み空間の訓練に使用される対照的な損失が原因である可能性が示唆された。
- 参考スコア(独自算出の注目度): 1.3241991482253108
- License:
- Abstract: Data embeddings with CLIP and ImageBind provide powerful features for the analysis of multimedia and/or multimodal data. We assess their performance here for classification using a Gaussian Mixture models (GMMs) based layer as an alternative to the standard Softmax layer. GMMs based classifiers have recently been shown to have interesting performances as part of deep learning pipelines trained end-to-end. Our first contribution is to investigate GMM based classification performance taking advantage of the embedded spaces CLIP and ImageBind. Our second contribution is in proposing our own GMM based classifier with a lower parameters count than previously proposed. Our findings are, that in most cases, on these tested embedded spaces, one gaussian component in the GMMs is often enough for capturing each class, and we hypothesize that this may be due to the contrastive loss used for training these embedded spaces that naturally concentrates features together for each class. We also observed that ImageBind often provides better performance than CLIP for classification of image datasets even when these embedded spaces are compressed using PCA.
- Abstract(参考訳): CLIPとImageBindによるデータ埋め込みは、マルチメディアおよび/またはマルチモーダルデータの分析に強力な機能を提供する。
本稿では,Gaussian Mixture Model (GMM) ベースの層を標準のSoftmaxレイヤの代替として利用して,それらの性能を分類するために評価する。
GMMベースの分類器は、エンドツーエンドで訓練されたディープラーニングパイプラインの一部として、最近興味深いパフォーマンスを示している。
最初のコントリビューションは,組込み空間CLIPとImageBindを利用したGMMに基づく分類性能の検証である。
第2のコントリビューションは、以前提案したよりも低いパラメータ数で独自のGMMベースの分類器を提案することである。
その結果,これらの組込み空間では,GMMの1つのガウス成分が各クラスを捉えるのに十分であることがわかった。
また,これらの組込み空間をPCAを用いて圧縮しても,画像データセットの分類において,ImageBindの方がCLIPよりも優れた性能が得られることも見いだした。
関連論文リスト
- MMCL: Boosting Deformable DETR-Based Detectors with Multi-Class Min-Margin Contrastive Learning for Superior Prohibited Item Detection [8.23801404004195]
X線画像における禁止項目検出は、最も効果的なセキュリティ検査方法の1つである。
X線画像における特異な現象が重なり合うと、前景と背景の特徴が結合する。
コンテンツクエリのカテゴリ意味情報を明らかにするために,Multi-class Min-Margin Contrastive Learning (MMCL)法を提案する。
論文 参考訳(メタデータ) (2024-06-05T12:07:58Z) - Bridging Distribution Learning and Image Clustering in High-dimensional
Space [9.131712404284876]
分布学習は、データサンプルの集合から確率密度関数を学習することに焦点を当てる。
クラスタリングは、教師なしの方法で類似したオブジェクトをまとめることを目的としています。
本稿では,オートエンコーダを用いて画像の高次元ラテント空間への符号化を行う。
論文 参考訳(メタデータ) (2023-08-29T23:35:36Z) - High-fidelity Pseudo-labels for Boosting Weakly-Supervised Segmentation [17.804090651425955]
画像レベルの弱い教師付きセグメンテーション(WSSS)は、トレーニング中にセグメンテーションマスクを代理することで、通常膨大なデータアノテーションコストを削減する。
本研究は,GAPの代替となる重要サンプリングと特徴類似性損失という,CAMを改善するための2つの手法に基づく。
複数の独立二項問題の後部二項問題に基づいて両手法を再構成する。
パフォーマンスが向上し、より一般的なものになり、事実上あらゆるWSSSメソッドを増強できるアドオンメソッドが出来上がります。
論文 参考訳(メタデータ) (2023-04-05T17:43:57Z) - Prediction Calibration for Generalized Few-shot Semantic Segmentation [101.69940565204816]
汎用Few-shot Semantic (GFSS) は、各画像ピクセルを、豊富なトレーニング例を持つベースクラスか、クラスごとにわずかに(例: 1-5)のトレーニングイメージを持つ新しいクラスのいずれかに分割することを目的としている。
我々は、融合したマルチレベル機能を用いて、分類器の最終予測をガイドするクロスアテンションモジュールを構築する。
私たちのPCNは、最先端の代替品よりも大きなマージンで優れています。
論文 参考訳(メタデータ) (2022-10-15T13:30:12Z) - GMMSeg: Gaussian Mixture based Generative Semantic Segmentation Models [74.0430727476634]
結合分布 p(ピクセル特徴,クラス) の高密度な生成型分類器に依存する分割モデルの新たなファミリーを提案する。
さまざまなセグメンテーションアーキテクチャとバックボーンにより、GMMSegはクローズドセットデータセットにおいて差別的よりも優れています。
GMMSegは、オープンワールドデータセットでもうまく機能する。
論文 参考訳(メタデータ) (2022-10-05T05:20:49Z) - A new perspective on probabilistic image modeling [92.89846887298852]
本稿では,密度推定,サンプリング,トラクタブル推論が可能な画像モデリングのための新しい確率論的手法を提案する。
DCGMMは、CNNのように、ランダムな初期条件からSGDによってエンドツーエンドに訓練することができる。
本研究は,近年のPCおよびSPNモデルと,推論,分類,サンプリングの観点から比較した。
論文 参考訳(メタデータ) (2022-03-21T14:53:57Z) - CIM: Class-Irrelevant Mapping for Few-Shot Classification [58.02773394658623]
FSC(Few-shot Classification)は近年のホットな問題の一つである。
事前訓練されたFEMを評価する方法は、FSCコミュニティにおいて最も重要な焦点である。
CIM(Class-Irrelevant Mapping)と呼ばれるシンプルなフレキシブルな手法を提案する。
論文 参考訳(メタデータ) (2021-09-07T03:26:24Z) - Image Modeling with Deep Convolutional Gaussian Mixture Models [79.0660895390689]
画像の記述と生成に適したGMM(Deep Hierarchical Gaussian Mixture Models)の新しい定式化を紹介します。
DCGMMは、畳み込みとプーリング操作によってリンクされた複数のGMM層の積み重ねたアーキテクチャによってこれを回避している。
dcgmmsでシャープな画像を生成するために,畳み込みやプーリングなどの非可逆操作をサンプリングする新しい勾配に基づく手法を提案する。
MNISTとFashionMNISTのデータセットに基づいて,クラスタリング,サンプリング,外乱検出において,フラットなGMMよりも優れていることを示すことで,DCGMMsモデルを検証した。
論文 参考訳(メタデータ) (2021-04-19T12:08:53Z) - Smoothed Gaussian Mixture Models for Video Classification and
Recommendation [10.119117405418868]
SGMM(S smoothed Gaussian mixed Model)と呼ばれる新しいクラスタ・アンド・アグリゲート法を提案する。
YouTube-8M分類タスクの広範な実験を通じて、SGMM/DSGMMはVLAD/NetVLADよりも一貫して優れていますが、統計的に有意なマージンを示しています。
論文 参考訳(メタデータ) (2020-12-17T06:52:41Z) - Prototype Mixture Models for Few-shot Semantic Segmentation [50.866870384596446]
サポートやクエリ画像内のオブジェクトが外観やポーズで大きく異なる可能性があるため、ショットのセグメンテーションは難しい。
プロトタイプベースセマンティック表現を強制するために,多種多様な画像領域と複数のプロトタイプとの相関関係を持つプロトタイプ混合モデル(PMMs)を提案する。
PMMはMS-COCOの5ショットセグメンテーション性能を最大5.82%改善し、モデルサイズと推論速度の適度なコストに留まった。
論文 参考訳(メタデータ) (2020-08-10T04:33:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。