Solving Prior Distribution Mismatch in Diffusion Models via Optimal Transport
- URL: http://arxiv.org/abs/2410.13431v1
- Date: Thu, 17 Oct 2024 10:54:55 GMT
- Title: Solving Prior Distribution Mismatch in Diffusion Models via Optimal Transport
- Authors: Zhanpeng Wang, Shenghao Li, Chen Wang, Shuting Cao, Na Lei, Zhongxuan Luo,
- Abstract summary: In recent years, the knowledge surrounding diffusion models(DMs) has grown significantly, though several theoretical gaps remain.
This paper explores the deeper relationship between optimal transport(OT) theory and DMs with discrete initial distribution.
We prove that as the diffusion termination time increases, the probability flow exponentially converges to the gradient of the solution to the classical Monge-Ampere equation.
- Score: 24.90486913773359
- License:
- Abstract: In recent years, the knowledge surrounding diffusion models(DMs) has grown significantly, though several theoretical gaps remain. Particularly noteworthy is prior error, defined as the discrepancy between the termination distribution of the forward process and the initial distribution of the reverse process. To address these deficiencies, this paper explores the deeper relationship between optimal transport(OT) theory and DMs with discrete initial distribution. Specifically, we demonstrate that the two stages of DMs fundamentally involve computing time-dependent OT. However, unavoidable prior error result in deviation during the reverse process under quadratic transport cost. By proving that as the diffusion termination time increases, the probability flow exponentially converges to the gradient of the solution to the classical Monge-Amp\`ere equation, we establish a vital link between these fields. Therefore, static OT emerges as the most intrinsic single-step method for bridging this theoretical potential gap. Additionally, we apply these insights to accelerate sampling in both unconditional and conditional generation scenarios. Experimental results across multiple image datasets validate the effectiveness of our approach.
Related papers
- Latent Schrodinger Bridge: Prompting Latent Diffusion for Fast Unpaired Image-to-Image Translation [58.19676004192321]
Diffusion models (DMs), which enable both image generation from noise and inversion from data, have inspired powerful unpaired image-to-image (I2I) translation algorithms.
We tackle this problem with Schrodinger Bridges (SBs), which are differential equations (SDEs) between distributions with minimal transport cost.
Inspired by this observation, we propose Latent Schrodinger Bridges (LSBs) that approximate the SB ODE via pre-trained Stable Diffusion.
We demonstrate that our algorithm successfully conduct competitive I2I translation in unsupervised setting with only a fraction of cost required by previous DM-
arXiv Detail & Related papers (2024-11-22T11:24:14Z) - Variational Diffusion Posterior Sampling with Midpoint Guidance [19.43399234028389]
State-of-the-art approaches formulate the problem as that of sampling from a surrogate diffusion model targeting the posterior.
While the former is replaced by the pre-trained score of the considered diffusion model, the guidance term has to be estimated.
We validate the proposed approach through extensive experiments on linear and nonlinear inverse problems.
arXiv Detail & Related papers (2024-10-13T18:03:53Z) - G2D2: Gradient-guided Discrete Diffusion for image inverse problem solving [55.185588994883226]
This paper presents a novel method for addressing linear inverse problems by leveraging image-generation models based on discrete diffusion as priors.
To the best of our knowledge, this is the first approach to use discrete diffusion model-based priors for solving image inverse problems.
arXiv Detail & Related papers (2024-10-09T06:18:25Z) - Amortizing intractable inference in diffusion models for vision, language, and control [89.65631572949702]
This paper studies amortized sampling of the posterior over data, $mathbfxsim prm post(mathbfx)propto p(mathbfx)r(mathbfx)$, in a model that consists of a diffusion generative model prior $p(mathbfx)$ and a black-box constraint or function $r(mathbfx)$.
We prove the correctness of a data-free learning objective, relative trajectory balance, for training a diffusion model that samples from
arXiv Detail & Related papers (2024-05-31T16:18:46Z) - Intention-aware Denoising Diffusion Model for Trajectory Prediction [14.524496560759555]
Trajectory prediction is an essential component in autonomous driving, particularly for collision avoidance systems.
We propose utilizing the diffusion model to generate the distribution of future trajectories.
We propose an Intention-aware denoising Diffusion Model (IDM)
Our methods achieve state-of-the-art results, with an FDE of 13.83 pixels on the SDD dataset and 0.36 meters on the ETH/UCY dataset.
arXiv Detail & Related papers (2024-03-14T09:05:25Z) - Eliminating Lipschitz Singularities in Diffusion Models [51.806899946775076]
We show that diffusion models frequently exhibit the infinite Lipschitz near the zero point of timesteps.
This poses a threat to the stability and accuracy of the diffusion process, which relies on integral operations.
We propose a novel approach, dubbed E-TSDM, which eliminates the Lipschitz of the diffusion model near zero.
arXiv Detail & Related papers (2023-06-20T03:05:28Z) - Reconstructing Graph Diffusion History from a Single Snapshot [87.20550495678907]
We propose a novel barycenter formulation for reconstructing Diffusion history from A single SnapsHot (DASH)
We prove that estimation error of diffusion parameters is unavoidable due to NP-hardness of diffusion parameter estimation.
We also develop an effective solver named DIffusion hiTting Times with Optimal proposal (DITTO)
arXiv Detail & Related papers (2023-06-01T09:39:32Z) - Two-stage Denoising Diffusion Model for Source Localization in Graph
Inverse Problems [19.57064597050846]
Source localization is the inverse problem of graph information dissemination.
We propose a two-stage optimization framework, the source localization denoising diffusion model (SL-Diff)
SL-Diff yields excellent prediction results within a reasonable sampling time at extensive experiments.
arXiv Detail & Related papers (2023-04-18T09:11:09Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
We provide the first rigorous analysis on approximation and generalization abilities of diffusion modeling.
We show that when the true density function belongs to the Besov space and the empirical score matching loss is properly minimized, the generated data distribution achieves the nearly minimax optimal estimation rates.
arXiv Detail & Related papers (2023-03-03T11:31:55Z) - Diffusion Schr\"odinger Bridge with Applications to Score-Based
Generative Modeling [24.46142828617484]
Diffusion SB is an original approximation of the Iterative Proportional Fitting (IPF) procedure to solve the Schr"odinger Bridge problem.
We present Diffusion SB, an original approximation of the Iterative Proportional Fitting (IPF) procedure to solve the SB problem, and provide theoretical analysis along with generative modeling experiments.
arXiv Detail & Related papers (2021-06-01T17:34:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.