Diffusion Models are Minimax Optimal Distribution Estimators
- URL: http://arxiv.org/abs/2303.01861v1
- Date: Fri, 3 Mar 2023 11:31:55 GMT
- Title: Diffusion Models are Minimax Optimal Distribution Estimators
- Authors: Kazusato Oko, Shunta Akiyama, Taiji Suzuki
- Abstract summary: We provide the first rigorous analysis on approximation and generalization abilities of diffusion modeling.
We show that when the true density function belongs to the Besov space and the empirical score matching loss is properly minimized, the generated data distribution achieves the nearly minimax optimal estimation rates.
- Score: 49.47503258639454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While efficient distribution learning is no doubt behind the groundbreaking
success of diffusion modeling, its theoretical guarantees are quite limited. In
this paper, we provide the first rigorous analysis on approximation and
generalization abilities of diffusion modeling for well-known function spaces.
The highlight of this paper is that when the true density function belongs to
the Besov space and the empirical score matching loss is properly minimized,
the generated data distribution achieves the nearly minimax optimal estimation
rates in the total variation distance and in the Wasserstein distance of order
one. Furthermore, we extend our theory to demonstrate how diffusion models
adapt to low-dimensional data distributions. We expect these results advance
theoretical understandings of diffusion modeling and its ability to generate
verisimilar outputs.
Related papers
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
Diffusion processes are prone to generating samples that reflect biases in a training dataset.
We develop constrained diffusion models by imposing diffusion constraints based on desired distributions.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - Unveil Conditional Diffusion Models with Classifier-free Guidance: A Sharp Statistical Theory [87.00653989457834]
Conditional diffusion models serve as the foundation of modern image synthesis and find extensive application in fields like computational biology and reinforcement learning.
Despite the empirical success, theory of conditional diffusion models is largely missing.
This paper bridges the gap by presenting a sharp statistical theory of distribution estimation using conditional diffusion models.
arXiv Detail & Related papers (2024-03-18T17:08:24Z) - On the Generalization Properties of Diffusion Models [33.93850788633184]
This work embarks on a comprehensive theoretical exploration of the generalization attributes of diffusion models.
We establish theoretical estimates of the generalization gap that evolves in tandem with the training dynamics of score-based diffusion models.
We extend our quantitative analysis to a data-dependent scenario, wherein target distributions are portrayed as a succession of densities.
arXiv Detail & Related papers (2023-11-03T09:20:20Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
This paper studies score approximation, estimation, and distribution recovery of diffusion models, when data are supported on an unknown low-dimensional linear subspace.
We show that with a properly chosen neural network architecture, the score function can be both accurately approximated and efficiently estimated.
The generated distribution based on the estimated score function captures the data geometric structures and converges to a close vicinity of the data distribution.
arXiv Detail & Related papers (2023-02-14T17:02:35Z) - Convergence of denoising diffusion models under the manifold hypothesis [3.096615629099617]
Denoising diffusion models are a recent class of generative models exhibiting state-of-the-art performance in image and audio synthesis.
This paper provides the first convergence results for diffusion models in a more general setting.
arXiv Detail & Related papers (2022-08-10T12:50:47Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution.
We show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process.
arXiv Detail & Related papers (2022-06-10T15:09:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.