Day-Night Adaptation: An Innovative Source-free Adaptation Framework for Medical Image Segmentation
- URL: http://arxiv.org/abs/2410.13472v2
- Date: Sun, 15 Dec 2024 13:59:19 GMT
- Title: Day-Night Adaptation: An Innovative Source-free Adaptation Framework for Medical Image Segmentation
- Authors: Ziyang Chen, Yiwen Ye, Yongsheng Pan, Jingfeng Zhang, Yanning Zhang, Yong Xia,
- Abstract summary: We propose a novel adaptation framework called Day-Night Adaptation (DyNA) with insights.
During the day, a low-frequency prompt is trained to adapt the frozen model to each test sample.
During the night, we reuse test data collected from the day and introduce a global student model to bridge the knowledge between teacher and student models.
- Score: 51.520294290813865
- License:
- Abstract: Distribution shifts widely exist in medical images acquired from different medical centres, hindering the deployment of semantic segmentation models trained on one centre (source domain) to another (target domain). While unsupervised domain adaptation has shown significant promise in mitigating these shifts, it poses privacy risks due to sharing data between centres. To facilitate adaptation while preserving data privacy, source-free domain adaptation (SFDA) and test-time adaptation (TTA) have emerged as effective paradigms, relying solely on target domain data. However, SFDA requires a pre-collected target domain dataset before deployment. TTA insufficiently exploit the potential value of test data, as it processes the test data only once. Considering that most medical centres operate during the day and remain inactive at night in clinical practice, we propose a novel adaptation framework called Day-Night Adaptation (DyNA) with above insights, which performs adaptation through day-night cycles without requiring access to source data. During the day, a low-frequency prompt is trained to adapt the frozen model to each test sample. We construct a memory bank for prompt initialization and develop a warm-up mechanism to enhance prompt training. During the night, we reuse test data collected from the day and introduce a global student model to bridge the knowledge between teacher and student models, facilitating model fine-tuning while ensuring training stability. Extensive experiments demonstrate that our DyNA outperforms existing TTA and SFDA methods on two benchmark medical image segmentation tasks. Code will be available after the paper is published.
Related papers
- BoostAdapter: Improving Vision-Language Test-Time Adaptation via Regional Bootstrapping [64.8477128397529]
We propose a training-required and training-free test-time adaptation framework.
We maintain a light-weight key-value memory for feature retrieval from instance-agnostic historical samples and instance-aware boosting samples.
We theoretically justify the rationality behind our method and empirically verify its effectiveness on both the out-of-distribution and the cross-domain datasets.
arXiv Detail & Related papers (2024-10-20T15:58:43Z) - Each Test Image Deserves A Specific Prompt: Continual Test-Time Adaptation for 2D Medical Image Segmentation [14.71883381837561]
Cross-domain distribution shift is a significant obstacle to deploying the pre-trained semantic segmentation model in real-world applications.
Test-time adaptation has proven its effectiveness in tackling the cross-domain distribution shift during inference.
We propose the Visual Prompt-based Test-Time Adaptation (VPTTA) method to train a specific prompt for each test image to align the statistics in the batch normalization layers.
arXiv Detail & Related papers (2023-11-30T09:03:47Z) - Robust Source-Free Domain Adaptation for Fundus Image Segmentation [3.585032903685044]
Unlabelled Domain Adaptation (UDA) is a learning technique that transfers knowledge learned in the source domain from labelled data to the target domain with only unlabelled data.
In this study, we propose a two-stage training stage for robust domain adaptation.
We propose a novel robust pseudo-label and pseudo-boundary (PLPB) method, which effectively utilizes unlabeled target data to generate pseudo labels and pseudo boundaries.
arXiv Detail & Related papers (2023-10-25T14:25:18Z) - TAAL: Test-time Augmentation for Active Learning in Medical Image
Segmentation [7.856339385917824]
This paper proposes Test-time Augmentation for Active Learning (TAAL), a novel semi-supervised active learning approach for segmentation.
Our results on a publicly-available dataset of cardiac images show that TAAL outperforms existing baseline methods in both fully-supervised and semi-supervised settings.
arXiv Detail & Related papers (2023-01-16T22:19:41Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time.
We propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously encourages a model to learn target representations in a class-discriminative manner.
arXiv Detail & Related papers (2022-06-01T03:02:07Z) - DLTTA: Dynamic Learning Rate for Test-time Adaptation on Cross-domain
Medical Images [56.72015587067494]
We propose a novel dynamic learning rate adjustment method for test-time adaptation, called DLTTA.
Our method achieves effective and fast test-time adaptation with consistent performance improvement over current state-of-the-art test-time adaptation methods.
arXiv Detail & Related papers (2022-05-27T02:34:32Z) - On-the-Fly Test-time Adaptation for Medical Image Segmentation [63.476899335138164]
Adapting the source model to target data distribution at test-time is an efficient solution for the data-shift problem.
We propose a new framework called Adaptive UNet where each convolutional block is equipped with an adaptive batch normalization layer.
During test-time, the model takes in just the new test image and generates a domain code to adapt the features of source model according to the test data.
arXiv Detail & Related papers (2022-03-10T18:51:29Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptationUDA (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain.
Prior UDA methods typically require to access the source data when learning to adapt the model.
This work tackles a practical setting where only a trained source model is available and how we can effectively utilize such a model without source data to solve UDA problems.
arXiv Detail & Related papers (2020-02-20T03:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.