論文の概要: SAda-Net: A Self-Supervised Adaptive Stereo Estimation CNN For Remote Sensing Image Data
- arxiv url: http://arxiv.org/abs/2410.13500v1
- Date: Thu, 17 Oct 2024 12:46:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:20:58.372755
- Title: SAda-Net: A Self-Supervised Adaptive Stereo Estimation CNN For Remote Sensing Image Data
- Title(参考訳): SAda-Net: リモートセンシング画像データのための自己監督型適応ステレオ推定CNN
- Authors: Dominik Hirner, Friedrich Fraundorfer,
- Abstract要約: 本稿では,自己改善型適応能力を有する自己教師型CNNを提案する。
最初のイテレーションでは、生成された不均等写像は不正確でうるさい。
この擬似基底構造は、ネットワークのトレーニングステップにおける各エポック後に適応され、更新される。
- 参考スコア(独自算出の注目度): 10.365146908906665
- License:
- Abstract: Stereo estimation has made many advancements in recent years with the introduction of deep-learning. However the traditional supervised approach to deep-learning requires the creation of accurate and plentiful ground-truth data, which is expensive to create and not available in many situations. This is especially true for remote sensing applications, where there is an excess of available data without proper ground truth. To tackle this problem, we propose a self-supervised CNN with self-improving adaptive abilities. In the first iteration, the created disparity map is inaccurate and noisy. Leveraging the left-right consistency check, we get a sparse but more accurate disparity map which is used as an initial pseudo ground-truth. This pseudo ground-truth is then adapted and updated after every epoch in the training step of the network. We use the sum of inconsistent points in order to track the network convergence. The code for our method is publicly available at: https://github.com/thedodo/SAda-Net}{https://github.com/thedodo/SAda-Net
- Abstract(参考訳): ステレオ推定は近年,ディープラーニングの導入によって多くの進歩を遂げている。
しかし、従来の教師付きアプローチでは、多くの状況において作成が高価であり、利用できない、正確で豊富な地上真実データを作成する必要がある。
これはリモートセンシングアプリケーションには特に当てはまります。
そこで本研究では,適応能力を自己改善した自己教師型CNNを提案する。
最初のイテレーションでは、生成された不均等写像は不正確でうるさい。
左の整合性チェックを活用すれば,初期擬似基底トラスとして使用されるスパースだがより正確な不均一マップが得られる。
この擬似基底構造は、ネットワークのトレーニングステップにおける各エポック後に適応され、更新される。
ネットワーク収束を追跡するために不整点の和を用いる。
私たちのメソッドのコードは、https://github.com/thedodo/SAda-Net}{https://github.com/thedodo/SAda-Netで公開されています。
関連論文リスト
- Stereo-LiDAR Depth Estimation with Deformable Propagation and Learned Disparity-Depth Conversion [16.164300644900404]
SDG-Depth という名前のセミデンスヒント誘導を用いた新しいステレオLiDAR深度推定ネットワークを提案する。
我々のネットワークは、学習可能な変形可能なウィンドウを用いてスパースヒントを伝播することにより、半密度のヒントマップと信頼マップを生成する変形可能な伝搬モジュールを含む。
本手法は正確かつ効率的であり, ベンチマーク実験の結果, 優れた性能を示した。
論文 参考訳(メタデータ) (2024-04-11T08:12:48Z) - Consistent Diffusion Models: Mitigating Sampling Drift by Learning to be
Consistent [97.64313409741614]
本稿では, モデルが生成したデータ上での予測が時間とともに一定であることを示す, 両立性特性を強制することを提案する。
CIFAR-10の条件および非条件生成とAFHQとFFHQのベースライン改良について,本研究の新たな訓練目標が得られた。
論文 参考訳(メタデータ) (2023-02-17T18:45:04Z) - FCDSN-DC: An Accurate and Lightweight Convolutional Neural Network for
Stereo Estimation with Depth Completion [14.876446067338406]
本研究では,立体推定のための高精度で軽量な畳み込みニューラルネットワークを提案する。
FCDSN-DCを用いた完全畳み込み変形可能な類似性ネットワーク(FCDSN-DC)と命名する。
実世界の屋内・屋外のシーン,特にミドルベリー,キッティ,ETH3Dにおいて,競争力のある結果が得られた場合の課題について検討した。
論文 参考訳(メタデータ) (2022-09-14T09:56:19Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing Data [96.23611272637943]
遠隔センシングにおける深層ニューラルネットワークの事前学習のための自己教師型アプローチを提案する。
ジオタグ付きオーディオ記録とリモートセンシングの対応を利用して、これは完全にラベルなしの方法で行われる。
提案手法は,既存のリモートセンシング画像の事前学習方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-08-02T07:50:50Z) - Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote
Sensing Data [64.40187171234838]
季節的コントラスト(SeCo)は、リモートセンシング表現のドメイン内事前トレーニングにラベルのないデータを活用するための効果的なパイプラインである。
SeCoは、転送学習を容易にし、再リモートセンシングアプリケーションの急速な進歩を可能にするために公開されます。
論文 参考訳(メタデータ) (2021-03-30T18:26:39Z) - Improving Deep Stereo Network Generalization with Geometric Priors [93.09496073476275]
地上の真実が密集した多様な現実世界のシーンの大規模なデータセットを得ることは困難である。
多くのアルゴリズムは、似たようなシーンや合成データセットの小さな実世界のデータセットに依存している。
本稿では,シーン幾何学の事前知識をエンド・ツー・エンドのステレオネットワークに統合し,ネットワークの一般化を支援することを提案する。
論文 参考訳(メタデータ) (2020-08-25T15:24:02Z) - Learning Stereo from Single Images [41.32821954097483]
教師付きディープネットワークはステレオ画像対の対応を見つける最良の方法の一つである。
地上の真理深度やそれに対応するステレオペアに高い依存度を持つことは不要である。
単眼深度推定の最近の進歩に触発されて、単眼画像から可塑性不均一マップを生成し、その欠陥不均一マップを慎重に設計したパイプラインに使用し、ステレオトレーニングペアを生成する。
論文 参考訳(メタデータ) (2020-08-04T12:22:21Z) - Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance
Disparity Estimation [51.17232267143098]
ステレオ画像から3次元物体を検出するための新しいシステムDisp R-CNNを提案する。
我々は、LiDAR点雲を必要とせずに、統計的形状モデルを用いて、密度の異なる擬似地下構造を生成する。
KITTIデータセットの実験によると、LiDARの基盤構造がトレーニング時に利用できない場合でも、Disp R-CNNは競争性能を達成し、平均精度で従来の最先端手法を20%上回っている。
論文 参考訳(メタデータ) (2020-04-07T17:48:45Z) - Dense Regression Network for Video Grounding [97.57178850020327]
地上の真理の中のフレームと開始(終了)フレームの間の距離を高密度の監督として利用し、映像のグラウンド化精度を向上させる。
具体的には、各フレームからビデオセグメントの開始(終了)フレームまでの距離を抑えるために、新しい高密度回帰ネットワーク(DRN)を設計する。
また,グラウンドリング結果の局所化品質を明示的に考慮するために,単純だが効果的なIoU回帰ヘッドモジュールを提案する。
論文 参考訳(メタデータ) (2020-04-07T17:15:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。