Bias in the Mirror: Are LLMs opinions robust to their own adversarial attacks ?
- URL: http://arxiv.org/abs/2410.13517v2
- Date: Tue, 05 Nov 2024 09:08:28 GMT
- Title: Bias in the Mirror: Are LLMs opinions robust to their own adversarial attacks ?
- Authors: Virgile Rennard, Christos Xypolopoulos, Michalis Vazirgiannis,
- Abstract summary: Large language models (LLMs) inherit biases from their training data and alignment processes, influencing their responses in subtle ways.
We introduce a novel approach where two instances of an LLM engage in self-debate, arguing opposing viewpoints to persuade a neutral version of the model.
We evaluate how firmly biases hold and whether models are susceptible to reinforcing misinformation or shifting to harmful viewpoints.
- Score: 22.0383367888756
- License:
- Abstract: Large language models (LLMs) inherit biases from their training data and alignment processes, influencing their responses in subtle ways. While many studies have examined these biases, little work has explored their robustness during interactions. In this paper, we introduce a novel approach where two instances of an LLM engage in self-debate, arguing opposing viewpoints to persuade a neutral version of the model. Through this, we evaluate how firmly biases hold and whether models are susceptible to reinforcing misinformation or shifting to harmful viewpoints. Our experiments span multiple LLMs of varying sizes, origins, and languages, providing deeper insights into bias persistence and flexibility across linguistic and cultural contexts.
Related papers
- Explicit vs. Implicit: Investigating Social Bias in Large Language Models through Self-Reflection [5.800102484016876]
Large Language Models (LLMs) have been shown to exhibit various biases and stereotypes in their generated content.
This paper presents a systematic framework grounded in social psychology theories to investigate explicit and implicit biases in LLMs.
arXiv Detail & Related papers (2025-01-04T14:08:52Z) - Large Language Models Reflect the Ideology of their Creators [71.65505524599888]
Large language models (LLMs) are trained on vast amounts of data to generate natural language.
This paper shows that the ideological stance of an LLM appears to reflect the worldview of its creators.
arXiv Detail & Related papers (2024-10-24T04:02:30Z) - Towards Implicit Bias Detection and Mitigation in Multi-Agent LLM Interactions [25.809599403713506]
Large Language Models (LLMs) are increasingly being employed in numerous studies to simulate societies and execute diverse social tasks.
LLMs are susceptible to societal biases due to their exposure to human-generated data.
This study investigates the presence of implicit gender biases in multi-agent LLM interactions and proposes two strategies to mitigate these biases.
arXiv Detail & Related papers (2024-10-03T15:28:05Z) - Spoken Stereoset: On Evaluating Social Bias Toward Speaker in Speech Large Language Models [50.40276881893513]
This study introduces Spoken Stereoset, a dataset specifically designed to evaluate social biases in Speech Large Language Models (SLLMs)
By examining how different models respond to speech from diverse demographic groups, we aim to identify these biases.
The findings indicate that while most models show minimal bias, some still exhibit slightly stereotypical or anti-stereotypical tendencies.
arXiv Detail & Related papers (2024-08-14T16:55:06Z) - Evaluating Implicit Bias in Large Language Models by Attacking From a Psychometric Perspective [66.34066553400108]
We conduct a rigorous evaluation of large language models' implicit bias towards certain demographics.
Inspired by psychometric principles, we propose three attack approaches, i.e., Disguise, Deception, and Teaching.
Our methods can elicit LLMs' inner bias more effectively than competitive baselines.
arXiv Detail & Related papers (2024-06-20T06:42:08Z) - Investigating Bias in LLM-Based Bias Detection: Disparities between LLMs and Human Perception [13.592532358127293]
We investigate the presence and nature of bias within Large Language Models (LLMs)
We probe whether LLMs exhibit biases, particularly in political bias prediction and text continuation tasks.
We propose debiasing strategies, including prompt engineering and model fine-tuning.
arXiv Detail & Related papers (2024-03-22T00:59:48Z) - Political Compass or Spinning Arrow? Towards More Meaningful Evaluations for Values and Opinions in Large Language Models [61.45529177682614]
We challenge the prevailing constrained evaluation paradigm for values and opinions in large language models.
We show that models give substantively different answers when not forced.
We distill these findings into recommendations and open challenges in evaluating values and opinions in LLMs.
arXiv Detail & Related papers (2024-02-26T18:00:49Z) - Cognitive Bias in Decision-Making with LLMs [19.87475562475802]
Large language models (LLMs) offer significant potential as tools to support an expanding range of decision-making tasks.
LLMs have been shown to inherit societal biases against protected groups, as well as be subject to bias functionally resembling cognitive bias.
Our work introduces BiasBuster, a framework designed to uncover, evaluate, and mitigate cognitive bias in LLMs.
arXiv Detail & Related papers (2024-02-25T02:35:56Z) - Exploring Value Biases: How LLMs Deviate Towards the Ideal [57.99044181599786]
Large-Language-Models (LLMs) are deployed in a wide range of applications, and their response has an increasing social impact.
We show that value bias is strong in LLMs across different categories, similar to the results found in human studies.
arXiv Detail & Related papers (2024-02-16T18:28:43Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
Large Language Models (LLMs) have sparked intense debate regarding the prevalence of bias in these models and its mitigation.
We propose a prompt-based method for the extraction of confounding and mediating attributes which contribute to the decision process.
We find that the observed disparate treatment can at least in part be attributed to confounding and mitigating attributes and model misalignment.
arXiv Detail & Related papers (2023-11-15T00:02:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.