Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis
- URL: http://arxiv.org/abs/2311.08605v2
- Date: Sun, 12 May 2024 13:56:25 GMT
- Title: Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis
- Authors: David F. Jenny, Yann Billeter, Mrinmaya Sachan, Bernhard Schölkopf, Zhijing Jin,
- Abstract summary: Large Language Models (LLMs) have sparked intense debate regarding the prevalence of bias in these models and its mitigation.
We propose a prompt-based method for the extraction of confounding and mediating attributes which contribute to the decision process.
We find that the observed disparate treatment can at least in part be attributed to confounding and mitigating attributes and model misalignment.
- Score: 86.49858739347412
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of Large Language Models (LLMs) has sparked intense debate regarding the prevalence of bias in these models and its mitigation. Yet, as exemplified by both results on debiasing methods in the literature and reports of alignment-related defects from the wider community, bias remains a poorly understood topic despite its practical relevance. To enhance the understanding of the internal causes of bias, we analyse LLM bias through the lens of causal fairness analysis, which enables us to both comprehend the origins of bias and reason about its downstream consequences and mitigation. To operationalize this framework, we propose a prompt-based method for the extraction of confounding and mediating attributes which contribute to the LLM decision process. By applying Activity Dependency Networks (ADNs), we then analyse how these attributes influence an LLM's decision process. We apply our method to LLM ratings of argument quality in political debates. We find that the observed disparate treatment can at least in part be attributed to confounding and mitigating attributes and model misalignment, and discuss the consequences of our findings for human-AI alignment and bias mitigation. Our code and data are at https://github.com/david-jenny/LLM-Political-Study.
Related papers
- Bias in Large Language Models: Origin, Evaluation, and Mitigation [4.606140332500086]
Large Language Models (LLMs) have revolutionized natural language processing, but their susceptibility to biases poses significant challenges.
This comprehensive review examines the landscape of bias in LLMs, from its origins to current mitigation strategies.
Ethical and legal implications of biased LLMs are discussed, emphasizing potential harms in real-world applications such as healthcare and criminal justice.
arXiv Detail & Related papers (2024-11-16T23:54:53Z) - Bias in the Mirror: Are LLMs opinions robust to their own adversarial attacks ? [22.0383367888756]
Large language models (LLMs) inherit biases from their training data and alignment processes, influencing their responses in subtle ways.
We introduce a novel approach where two instances of an LLM engage in self-debate, arguing opposing viewpoints to persuade a neutral version of the model.
We evaluate how firmly biases hold and whether models are susceptible to reinforcing misinformation or shifting to harmful viewpoints.
arXiv Detail & Related papers (2024-10-17T13:06:02Z) - A Multi-LLM Debiasing Framework [85.17156744155915]
Large Language Models (LLMs) are powerful tools with the potential to benefit society immensely, yet, they have demonstrated biases that perpetuate societal inequalities.
Recent research has shown a growing interest in multi-LLM approaches, which have been demonstrated to be effective in improving the quality of reasoning.
We propose a novel multi-LLM debiasing framework aimed at reducing bias in LLMs.
arXiv Detail & Related papers (2024-09-20T20:24:50Z) - The African Woman is Rhythmic and Soulful: An Investigation of Implicit Biases in LLM Open-ended Text Generation [3.9945212716333063]
Implicit biases are significant because they influence the decisions made by Large Language Models (LLMs)
Traditionally, explicit bias tests or embedding-based methods are employed to detect bias, but these approaches can overlook more nuanced, implicit forms of bias.
We introduce two novel psychological-inspired methodologies to reveal and measure implicit biases through prompt-based and decision-making tasks.
arXiv Detail & Related papers (2024-07-01T13:21:33Z) - Evaluating Human Alignment and Model Faithfulness of LLM Rationale [66.75309523854476]
We study how well large language models (LLMs) explain their generations through rationales.
We show that prompting-based methods are less "faithful" than attribution-based explanations.
arXiv Detail & Related papers (2024-06-28T20:06:30Z) - Interpreting Bias in Large Language Models: A Feature-Based Approach [0.0]
Large Language Models (LLMs) have showcased remarkable performance across various natural language processing (NLP) tasks.
This paper investigates the propagation of biases within LLMs through a novel feature-based analytical approach.
arXiv Detail & Related papers (2024-06-18T07:28:15Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
Large language models (LLMs) can estimate causal effects under interventions on different parts of a system.
We conduct empirical analyses to evaluate whether LLMs can accurately update their knowledge of a data-generating process in response to an intervention.
We create benchmarks that span diverse causal graphs (e.g., confounding, mediation) and variable types, and enable a study of intervention-based reasoning.
arXiv Detail & Related papers (2024-04-08T14:15:56Z) - Investigating Bias in LLM-Based Bias Detection: Disparities between LLMs and Human Perception [13.592532358127293]
We investigate the presence and nature of bias within Large Language Models (LLMs)
We probe whether LLMs exhibit biases, particularly in political bias prediction and text continuation tasks.
We propose debiasing strategies, including prompt engineering and model fine-tuning.
arXiv Detail & Related papers (2024-03-22T00:59:48Z) - Exploring Value Biases: How LLMs Deviate Towards the Ideal [57.99044181599786]
Large-Language-Models (LLMs) are deployed in a wide range of applications, and their response has an increasing social impact.
We show that value bias is strong in LLMs across different categories, similar to the results found in human studies.
arXiv Detail & Related papers (2024-02-16T18:28:43Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
We present a comprehensive survey of bias evaluation and mitigation techniques for large language models (LLMs)
We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing.
We then unify the literature by proposing three intuitive, two for bias evaluation, and one for mitigation.
arXiv Detail & Related papers (2023-09-02T00:32:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.