論文の概要: SynapticRAG: Enhancing Temporal Memory Retrieval in Large Language Models through Synaptic Mechanisms
- arxiv url: http://arxiv.org/abs/2410.13553v2
- Date: Sun, 25 May 2025 03:48:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 14:32:52.751559
- Title: SynapticRAG: Enhancing Temporal Memory Retrieval in Large Language Models through Synaptic Mechanisms
- Title(参考訳): SynapticRAG: シナプス機構による大規模言語モデルにおける時間記憶検索の促進
- Authors: Yuki Hou, Haruki Tamoto, Qinghua Zhao, Homei Miyashita,
- Abstract要約: 本稿では、時間的関連トリガーと生物学的に誘発されるシナプス伝達機構を組み合わせたシナプスRAGを提案する。
本手法では, 時間的関連トリガーとシナプス様刺激伝達を用いて, 関連する対話履歴を同定する。
4つのデータセットの実験では、SynapticRAGは最大14.66%までの複数のメトリクスで一貫した改善を達成している。
- 参考スコア(独自算出の注目度): 8.787174594966492
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Existing retrieval methods in Large Language Models show degradation in accuracy when handling temporally distributed conversations, primarily due to their reliance on simple similarity-based retrieval. Unlike existing memory retrieval methods that rely solely on semantic similarity, we propose SynapticRAG, which uniquely combines temporal association triggers with biologically-inspired synaptic propagation mechanisms. Our approach uses temporal association triggers and synaptic-like stimulus propagation to identify relevant dialogue histories. A dynamic leaky integrate-and-fire mechanism then selects the most contextually appropriate memories. Experiments on four datasets of English, Chinese and Japanese show that compared to state-of-the-art memory retrieval methods, SynapticRAG achieves consistent improvements across multiple metrics up to 14.66% points. This work bridges the gap between cognitive science and language model development, providing a new framework for memory management in conversational systems.
- Abstract(参考訳): 大きな言語モデルにおける既存の検索手法は、時間的に分散した会話を扱う際の精度の低下を示し、主に単純な類似性に基づく検索に依存している。
意味的類似性にのみ依存する既存のメモリ検索手法とは異なり, 時間的関連トリガと生物学的にインスパイアされたシナプス伝達機構を一意に組み合わせたSynapticRAGを提案する。
本手法では, 時間的関連トリガーとシナプス様刺激伝達を用いて, 関連する対話履歴を同定する。
動的に漏れやすい統合・発火機構は、最も文脈的に適切な記憶を選択する。
英語、中国語、日本語の4つのデータセットの実験では、最先端のメモリ検索手法と比較して、SynapticRAGは最大14.66%までの複数のメトリクスで一貫した改善を達成している。
この研究は、認知科学と言語モデル開発のギャップを埋め、会話システムにおけるメモリ管理のための新しいフレームワークを提供する。
関連論文リスト
- Hierarchical Relation-augmented Representation Generalization for Few-shot Action Recognition [53.02634128715853]
Few-shot Action Recognition (FSAR) は、新しいアクションカテゴリーをほとんど見ない形で認識することを目的としている。
FSARのための階層的関係強化表現一般化フレームワークHR2G-shotを提案する。
3種類の関係モデリング(フレーム間、ビデオ間、タスク間)を統合し、全体的視点からタスク固有の時間パターンを学習する。
論文 参考訳(メタデータ) (2025-04-14T10:23:22Z) - In Prospect and Retrospect: Reflective Memory Management for Long-term Personalized Dialogue Agents [70.12342024019044]
大規模言語モデル(LLM)は、オープンエンド対話において大きな進歩を遂げているが、関連する情報の保持と取得ができないため、その有効性は制限されている。
本稿では,長期対話エージェントのための新しいメカニズムであるリフレクティブメモリ管理(RMM)を提案する。
RMMは、LongMemEvalデータセットのメモリ管理なしでベースラインよりも10%以上精度が向上している。
論文 参考訳(メタデータ) (2025-03-11T04:15:52Z) - Exploring Synaptic Resonance in Large Language Models: A Novel Approach to Contextual Memory Integration [0.0]
新しいメカニズム、Synaptic Resonanceは、トレーニングと推論中に関連する記憶経路を動的に強化するために導入された。
オープンソースの言語モデルを用いて行った評価は、パープレキシティの低減、文脈的コヒーレンスの向上、入力雑音に対するロバスト性の向上を示す。
論文 参考訳(メタデータ) (2025-02-15T07:06:10Z) - Temporal Model On Quantum Logic [0.0]
このフレームワークは、線形および分岐時間モデルを用いて、時間とともに命題の進化を定式化する。
メモリの階層構造は、有向非巡回グラフを用いて表される。
論文 参考訳(メタデータ) (2025-02-09T17:16:53Z) - Neuron: Learning Context-Aware Evolving Representations for Zero-Shot Skeleton Action Recognition [64.56321246196859]
本稿では,dUalスケルトン・セマンティック・セマンティック・セマンティック・セマンティック・シンジスティック・フレームワークを提案する。
まず、時空間進化型マイクロプロトタイプを構築し、動的コンテキスト認識側情報を統合する。
本研究では,空間的圧縮と時間的記憶機構を導入し,空間的時間的マイクロプロトタイプの成長を導く。
論文 参考訳(メタデータ) (2024-11-18T05:16:11Z) - Embodied-RAG: General Non-parametric Embodied Memory for Retrieval and Generation [65.23793829741014]
Embodied-RAGは、非パラメトリックメモリシステムによるエンボディエージェントのモデルを強化するフレームワークである。
コアとなるEmbodied-RAGのメモリはセマンティックフォレストとして構成され、言語記述を様々なレベルで詳細に保存する。
Embodied-RAGがRAGをロボット領域に効果的にブリッジし、200以上の説明とナビゲーションクエリをうまく処理できることを実証する。
論文 参考訳(メタデータ) (2024-09-26T21:44:11Z) - Towards Lifelong Dialogue Agents via Timeline-based Memory Management [26.95907827895548]
本稿では,生涯対話エージェントのフレームワークであるTheANINEを紹介する。
TheANINEはメモリ除去を破棄し、その時間的および原因=効果の関係に基づいてそれらをリンクすることで大規模な記憶を管理する。
TheANINEとともに、反ファクト駆動評価方式であるTeaFarmを紹介する。
論文 参考訳(メタデータ) (2024-06-16T16:17:46Z) - Hello Again! LLM-powered Personalized Agent for Long-term Dialogue [63.65128176360345]
モデルに依存しない長期対話エージェント(LD-Agent)を導入する。
イベント認識、ペルソナ抽出、応答生成のための3つの独立した調整可能なモジュールが組み込まれている。
LD-Agentの有効性, 汎用性, クロスドメイン性について実験的に検証した。
論文 参考訳(メタデータ) (2024-06-09T21:58:32Z) - Semantically-correlated memories in a dense associative model [2.7195102129095003]
私はCorrelated Associative Memory(CDAM)という新しい連想記憶モデルを紹介します。
CDAMは、自動連想とヘテロ連想の両方を、連続的に評価されたメモリパターンのための統一されたフレームワークに統合する。
理論的、数値的に解析され、4つの異なる力学モードが明らかにされている。
論文 参考訳(メタデータ) (2024-04-10T16:04:07Z) - A Framework for Inference Inspired by Human Memory Mechanisms [9.408704431898279]
本稿では,知覚,記憶,推論の構成要素からなるPMIフレームワークを提案する。
メモリモジュールは、ワーキングメモリと長期メモリから構成され、後者は、広範囲で複雑なリレーショナル知識と経験を維持するために、高次構造を備えている。
我々は、bAbI-20kやSolt-of-CLEVRデータセットのような質問応答タスクにおいて、一般的なTransformerとCNNモデルを改善するためにPMIを適用します。
論文 参考訳(メタデータ) (2023-10-01T08:12:55Z) - Relational Temporal Graph Reasoning for Dual-task Dialogue Language
Understanding [39.76268402567324]
デュアルタスクダイアログ理解言語は、2つの相関ダイアログ言語理解タスクを、その固有の相関を通じて同時に扱うことを目的としている。
我々は、リレーショナル時間グラフ推論(Relational temporal graph reasoning)が中心となる新しいフレームワークを提唱した。
私たちのモデルは最先端のモデルよりも大きなマージンで優れています。
論文 参考訳(メタデータ) (2023-06-15T13:19:08Z) - Sparse Coding in a Dual Memory System for Lifelong Learning [13.041607703862724]
Brainは、重複しないスパースコードの情報を効率的にエンコードする。
我々はマルチメモリ再生機構においてスパース符号化を用いる。
本手法は,作業モデルのシナプス重みに符号化された情報を集約し,集約する,長期的セマンティックメモリを新たに維持する。
論文 参考訳(メタデータ) (2022-12-28T12:56:15Z) - Canonical Cortical Graph Neural Networks and its Application for Speech
Enhancement in Future Audio-Visual Hearing Aids [0.726437825413781]
本稿では, 層内変調を用いたマルチモーダル情報と正準相関解析(CCA)を組み合わせた, より生物学的に妥当な自己教師型機械学習手法を提案する。
この手法は、よりクリーンなオーディオ再構成とエネルギー効率の両方を考慮した最近の最先端の結果より優れており、スモーザーでスモーザーなニューロンの発火速度分布によって説明されている。
論文 参考訳(メタデータ) (2022-06-06T15:20:07Z) - Temporal Memory Relation Network for Workflow Recognition from Surgical
Video [53.20825496640025]
本研究では, 長期および多スケールの時間パターンを関連づける, エンドツーエンドの時間メモリ関係ネットワーク (TMNet) を提案する。
我々はこのアプローチを2つのベンチマーク手術ビデオデータセットで広範囲に検証した。
論文 参考訳(メタデータ) (2021-03-30T13:20:26Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - Sequential Recommender via Time-aware Attentive Memory Network [67.26862011527986]
本稿では,注意機構と繰り返し単位を改善するための時間ゲーティング手法を提案する。
また,長期と短期の嗜好を統合するマルチホップ・タイムアウェア・アテンテーティブ・メモリ・ネットワークを提案する。
提案手法は,候補探索タスクに対してスケーラブルであり,ドット積に基づくTop-Kレコメンデーションのための潜在因数分解の非線形一般化とみなすことができる。
論文 参考訳(メタデータ) (2020-05-18T11:29:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。