論文の概要: Towards Better Performance in Incomplete LDL: Addressing Data Imbalance
- arxiv url: http://arxiv.org/abs/2410.13579v1
- Date: Thu, 17 Oct 2024 14:12:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:18:55.292886
- Title: Towards Better Performance in Incomplete LDL: Addressing Data Imbalance
- Title(参考訳): 不完全なLCLの性能向上に向けて:データの不均衡に対処する
- Authors: Zhiqiang Kou, Haoyuan Xuan, Jing Wang, Yuheng Jia, Xin Geng,
- Abstract要約: 我々は,不完全なラベルと不均衡なラベル分布を同時に扱うフレームワークであるtextIncomplete and Im Balance Label Distribution Learning (I(2)LDL)を提案する。
本手法は, ラベル分布行列を, 頻繁なラベルのための低ランク成分と希少なラベルのためのスパース成分に分解し, 頭部と尾部のラベルの構造を効果的に把握する。
- 参考スコア(独自算出の注目度): 48.54894491724677
- License:
- Abstract: Label Distribution Learning (LDL) is a novel machine learning paradigm that addresses the problem of label ambiguity and has found widespread applications. Obtaining complete label distributions in real-world scenarios is challenging, which has led to the emergence of Incomplete Label Distribution Learning (InLDL). However, the existing InLDL methods overlook a crucial aspect of LDL data: the inherent imbalance in label distributions. To address this limitation, we propose \textbf{Incomplete and Imbalance Label Distribution Learning (I\(^2\)LDL)}, a framework that simultaneously handles incomplete labels and imbalanced label distributions. Our method decomposes the label distribution matrix into a low-rank component for frequent labels and a sparse component for rare labels, effectively capturing the structure of both head and tail labels. We optimize the model using the Alternating Direction Method of Multipliers (ADMM) and derive generalization error bounds via Rademacher complexity, providing strong theoretical guarantees. Extensive experiments on 15 real-world datasets demonstrate the effectiveness and robustness of our proposed framework compared to existing InLDL methods.
- Abstract(参考訳): ラベル分散学習(LDL)は、ラベルあいまいさの問題に対処する新しい機械学習パラダイムであり、広く応用されている。
実世界のシナリオにおける完全なラベル分布の取得は困難であり、不完全なラベル分布学習(InLDL)の出現につながった。
しかし、既存のInLDL法は、ラベル分布に固有の不均衡というLCLデータの重要な側面を見落としている。
この制限に対処するため,不完全なラベルと不均衡なラベル分布を同時に扱うフレームワークである「textbf{Incomplete and Im Balance Label Distribution Learning (I\(^2\)LDL)}を提案する。
本手法は, ラベル分布行列を, 頻繁なラベルのための低ランク成分と希少なラベルのためのスパース成分に分解し, 頭部と尾部のラベルの構造を効果的に把握する。
乗算器の交互方向法(ADMM)を用いてモデルを最適化し,Rademacher複雑性による一般化誤差境界を導出し,強力な理論的保証を提供する。
実世界の15のデータセットに対する大規模な実験は、既存のInLDL法と比較して提案フレームワークの有効性とロバスト性を示している。
関連論文リスト
- Inaccurate Label Distribution Learning with Dependency Noise [52.08553913094809]
本稿では,依存雑音に基づく不正確なラベル分布学習(DN-ILDL)フレームワークを導入し,ラベル分布学習におけるノイズによる課題に対処する。
本稿では,DN-ILDLがILDL問題に効果的に対処し,既存のLCL法より優れていることを示す。
論文 参考訳(メタデータ) (2024-05-26T07:58:07Z) - Robust Representation Learning for Unreliable Partial Label Learning [86.909511808373]
部分ラベル学習(Partial Label Learning, PLL)は、弱い教師付き学習の一種で、各トレーニングインスタンスに候補ラベルのセットが割り当てられる。
これはUn Reliable partial Label Learning (UPLL) と呼ばれ、部分ラベルの本質的な信頼性の欠如とあいまいさにより、さらなる複雑さをもたらす。
本研究では,信頼できない部分ラベルに対するモデル強化を支援するために,信頼性に欠けるコントラスト学習を活用するUnreliability-Robust Representation Learning framework(URRL)を提案する。
論文 参考訳(メタデータ) (2023-08-31T13:37:28Z) - Exploiting Multi-Label Correlation in Label Distribution Learning [0.0]
ラベル分散学習(LDL)は、各インスタンスにラベル分布を割り当てる新しい機械学習パラダイムである。
最近の研究では、ラベル分布行列は一般的にフルランクであり、ローランクのラベル相関を利用した研究に挑戦していることが明らかになっている。
LDL に補助的な MLL プロセスを導入し,低ランクのラベル相関を LDL ではなく MLL で取得する。
論文 参考訳(メタデータ) (2023-08-03T13:06:45Z) - Contrastive Label Enhancement [13.628665406039609]
コントラスト学習戦略により高次特徴を生成するコントラストラベル拡張(Contrastive Label Enhancement, ConLE)を提案する。
得られた高レベルな特徴を活用し、よく設計されたトレーニング戦略によりラベル分布を得る。
論文 参考訳(メタデータ) (2023-05-16T14:53:07Z) - Class-Distribution-Aware Pseudo Labeling for Semi-Supervised Multi-Label
Learning [97.88458953075205]
Pseudo-labelingは、ラベルなしデータを利用するための人気で効果的なアプローチとして登場した。
本稿では,クラスアウェアの擬似ラベル処理を行うCAP(Class-Aware Pseudo-Labeling)という新しい手法を提案する。
論文 参考訳(メタデータ) (2023-05-04T12:52:18Z) - Label Distribution Learning from Logical Label [19.632157794117553]
ラベル分布学習(LDL)は、サンプルのラベル記述度(ラベル分布)を予測する効果的な方法である。
しかし、トレーニングサンプルのラベル分布のアノテートは非常にコストがかかる。
論理ラベルから直接LDLモデルを学習する新しい手法を提案し,LEとLDLを結合モデルに統一する。
論文 参考訳(メタデータ) (2023-03-13T04:31:35Z) - Dist-PU: Positive-Unlabeled Learning from a Label Distribution
Perspective [89.5370481649529]
本稿では,PU学習のためのラベル分布視点を提案する。
そこで本研究では,予測型と基底型のラベル分布間のラベル分布の整合性を追求する。
提案手法の有効性を3つのベンチマークデータセットで検証した。
論文 参考訳(メタデータ) (2022-12-06T07:38:29Z) - Label distribution learning via label correlation grid [9.340734188957727]
ラベル関係の不確かさをモデル化するための textbfLabel textbfCorrelation textbfGrid (LCG) を提案する。
我々のネットワークはLCGを学習し、各インスタンスのラベル分布を正確に推定する。
論文 参考訳(メタデータ) (2022-10-15T03:58:15Z) - Disentangling Sampling and Labeling Bias for Learning in Large-Output
Spaces [64.23172847182109]
異なる負のサンプリングスキームが支配的ラベルと稀なラベルで暗黙的にトレードオフパフォーマンスを示す。
すべてのラベルのサブセットで作業することで生じるサンプリングバイアスと、ラベルの不均衡に起因するデータ固有のラベルバイアスの両方に明示的に対処する統一された手段を提供する。
論文 参考訳(メタデータ) (2021-05-12T15:40:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。