Normalizing self-supervised learning for provably reliable Change Point Detection
- URL: http://arxiv.org/abs/2410.13637v1
- Date: Thu, 17 Oct 2024 15:07:56 GMT
- Title: Normalizing self-supervised learning for provably reliable Change Point Detection
- Authors: Alexandra Bazarova, Evgenia Romanenkova, Alexey Zaytsev,
- Abstract summary: Change point detection (CPD) methods aim to identify abrupt shifts in the distribution of input data streams.
Traditional unsupervised CPD techniques face significant limitations, often relying on strong assumptions.
Our work integrates the expressive power of representation learning with the groundedness of traditional CPD techniques.
- Score: 47.561225734422834
- License:
- Abstract: Change point detection (CPD) methods aim to identify abrupt shifts in the distribution of input data streams. Accurate estimators for this task are crucial across various real-world scenarios. Yet, traditional unsupervised CPD techniques face significant limitations, often relying on strong assumptions or suffering from low expressive power due to inherent model simplicity. In contrast, representation learning methods overcome these drawbacks by offering flexibility and the ability to capture the full complexity of the data without imposing restrictive assumptions. However, these approaches are still emerging in the CPD field and lack robust theoretical foundations to ensure their reliability. Our work addresses this gap by integrating the expressive power of representation learning with the groundedness of traditional CPD techniques. We adopt spectral normalization (SN) for deep representation learning in CPD tasks and prove that the embeddings after SN are highly informative for CPD. Our method significantly outperforms current state-of-the-art methods during the comprehensive evaluation via three standard CPD datasets.
Related papers
- Uncertainty Quantification via Hölder Divergence for Multi-View Representation Learning [18.419742575630217]
This paper introduces a novel algorithm based on H"older Divergence (HD) to enhance the reliability of multi-view learning.
Through the Dempster-Shafer theory, integration of uncertainty from different modalities, thereby generating a comprehensive result.
Mathematically, HD proves to better measure the distance'' between real data distribution and predictive distribution of the model.
arXiv Detail & Related papers (2024-10-29T04:29:44Z) - Pessimistic Causal Reinforcement Learning with Mediators for Confounded Offline Data [17.991833729722288]
We propose a novel policy learning algorithm, PESsimistic CAusal Learning (PESCAL)
Our key observation is that, by incorporating auxiliary variables that mediate the effect of actions on system dynamics, it is sufficient to learn a lower bound of the mediator distribution function, instead of the Q-function.
We provide theoretical guarantees for the algorithms we propose, and demonstrate their efficacy through simulations, as well as real-world experiments utilizing offline datasets from a leading ride-hailing platform.
arXiv Detail & Related papers (2024-03-18T14:51:19Z) - Learning from Multi-Perception Features for Real-Word Image
Super-resolution [87.71135803794519]
We propose a novel SR method called MPF-Net that leverages multiple perceptual features of input images.
Our method incorporates a Multi-Perception Feature Extraction (MPFE) module to extract diverse perceptual information.
We also introduce a contrastive regularization term (CR) that improves the model's learning capability.
arXiv Detail & Related papers (2023-05-26T07:35:49Z) - Efficient Deep Reinforcement Learning Requires Regulating Overfitting [91.88004732618381]
We show that high temporal-difference (TD) error on the validation set of transitions is the main culprit that severely affects the performance of deep RL algorithms.
We show that a simple online model selection method that targets the validation TD error is effective across state-based DMC and Gym tasks.
arXiv Detail & Related papers (2023-04-20T17:11:05Z) - Uncertain Facial Expression Recognition via Multi-task Assisted
Correction [43.02119884581332]
We propose a novel method of multi-task assisted correction in addressing uncertain facial expression recognition called MTAC.
Specifically, a confidence estimation block and a weighted regularization module are applied to highlight solid samples and suppress uncertain samples in every batch.
Experiments on RAF-DB, AffectNet, and AffWild2 datasets demonstrate that the MTAC obtains substantial improvements over baselines when facing synthetic and real uncertainties.
arXiv Detail & Related papers (2022-12-14T10:28:08Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - On the Practicality of Deterministic Epistemic Uncertainty [106.06571981780591]
deterministic uncertainty methods (DUMs) achieve strong performance on detecting out-of-distribution data.
It remains unclear whether DUMs are well calibrated and can seamlessly scale to real-world applications.
arXiv Detail & Related papers (2021-07-01T17:59:07Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.