Selection of Filters for Photonic Crystal Spectrometer Using Domain-Aware Evolutionary Algorithms
- URL: http://arxiv.org/abs/2410.13657v1
- Date: Thu, 17 Oct 2024 15:20:22 GMT
- Title: Selection of Filters for Photonic Crystal Spectrometer Using Domain-Aware Evolutionary Algorithms
- Authors: Kirill Antonov, Marijn Siemons, Niki van Stein, Thomas H. W. Bäck, Ralf Kohlhaas, Anna V. Kononova,
- Abstract summary: This work addresses the critical challenge of optimal filter selection for a novel trace gas measurement device.
We formulate the problem as compared to the optimization problem and develop a simulator mimicking gas retrieval with noise.
We aim to improve the found top-performing algorithms using our novel distance-driven extensions, that employ metrics on the space of filter selections.
- Score: 0.0
- License:
- Abstract: This work addresses the critical challenge of optimal filter selection for a novel trace gas measurement device. This device uses photonic crystal filters to retrieve trace gas concentrations prone to photon and read noise. The filter selection directly influences accuracy and precision of the gas retrieval and therefore is a crucial performance driver. We formulate the problem as a stochastic combinatorial optimization problem and develop a simulator mimicking gas retrieval with noise. The objective function for selecting filters reducing retrieval error is minimized by the employed metaheuristics, that represent various families of optimizers. We aim to improve the found top-performing algorithms using our novel distance-driven extensions, that employ metrics on the space of filter selections. This leads to a novel adaptation of the UMDA algorithm, we call UMDA-U-PLS-Dist, equipped with one of the proposed distance metrics as the most efficient and robust solver among the considered ones. Analysis of filter sets produced by this method reveals that filters with relatively smooth transmission profiles but containing high contrast improve the device performance. Moreover, the top-performing obtained solution shows significant improvement compared to the baseline.
Related papers
- Beyond Kalman Filters: Deep Learning-Based Filters for Improved Object
Tracking [3.5693768338940304]
We propose two innovative data-driven filtering methods for tracking-by-detection systems.
The first method employs a Bayesian filter with a trainable motion model to predict an object's future location.
The second method, an end-to-end trainable filter, goes a step further by learning to correct detector errors.
arXiv Detail & Related papers (2024-02-15T10:47:44Z) - Closed-form Filtering for Non-linear Systems [83.91296397912218]
We propose a new class of filters based on Gaussian PSD Models, which offer several advantages in terms of density approximation and computational efficiency.
We show that filtering can be efficiently performed in closed form when transitions and observations are Gaussian PSD Models.
Our proposed estimator enjoys strong theoretical guarantees, with estimation error that depends on the quality of the approximation and is adaptive to the regularity of the transition probabilities.
arXiv Detail & Related papers (2024-02-15T08:51:49Z) - Implicit Maximum a Posteriori Filtering via Adaptive Optimization [4.767884267554628]
We frame the standard Bayesian filtering problem as optimization over a time-varying objective.
We show that our framework results in filters that are effective, robust, and scalable to high-dimensional systems.
arXiv Detail & Related papers (2023-11-17T15:30:44Z) - An Ensemble Score Filter for Tracking High-Dimensional Nonlinear Dynamical Systems [10.997994515823798]
We propose an ensemble score filter (EnSF) for solving high-dimensional nonlinear filtering problems.
Unlike existing diffusion models that train neural networks to approximate the score function, we develop a training-free score estimation.
EnSF provides surprising performance, compared with the state-of-the-art Local Ensemble Transform Kalman Filter method.
arXiv Detail & Related papers (2023-09-02T16:48:02Z) - Filter Pruning for Efficient CNNs via Knowledge-driven Differential
Filter Sampler [103.97487121678276]
Filter pruning simultaneously accelerates the computation and reduces the memory overhead of CNNs.
We propose a novel Knowledge-driven Differential Filter Sampler(KDFS) with Masked Filter Modeling(MFM) framework for filter pruning.
arXiv Detail & Related papers (2023-07-01T02:28:41Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
We derive an approximate message-passing algorithm (AMP) for the inhomogeneous problem.
We identify in particular the existence of a statistical-to-computational gap where known algorithms require a signal-to-noise ratio bigger than the information-theoretic threshold to perform better than random.
arXiv Detail & Related papers (2023-02-13T19:57:17Z) - A Hybrid SFANC-FxNLMS Algorithm for Active Noise Control based on Deep
Learning [17.38644275080562]
Filtered-X normalized least-mean-square (FxNLMS) algorithm can obtain lower steady-state errors through adaptive optimization.
This paper proposes a hybrid SFANC-FxNLMS approach to overcome the adaptive algorithm's slow convergence.
Experiments show that the hybrid SFANC-FxNLMS algorithm can achieve a rapid response time, a low noise reduction error, and a high degree of robustness.
arXiv Detail & Related papers (2022-08-17T05:42:39Z) - Filter-enhanced MLP is All You Need for Sequential Recommendation [89.0974365344997]
In online platforms, logged user behavior data is inevitable to contain noise.
We borrow the idea of filtering algorithms from signal processing that attenuates the noise in the frequency domain.
We propose textbfFMLP-Rec, an all-MLP model with learnable filters for sequential recommendation task.
arXiv Detail & Related papers (2022-02-28T05:49:35Z) - Direct design of biquad filter cascades with deep learning by sampling
random polynomials [5.1118282767275005]
In this work, we learn a direct mapping from the target magnitude response to the filter coefficient space with a neural network trained on millions of random filters.
We demonstrate our approach enables both fast and accurate estimation of filter coefficients given a desired response.
We compare our method against existing methods including modified Yule-Walker and gradient descent and show IIRNet is, on average, both faster and more accurate.
arXiv Detail & Related papers (2021-10-07T17:58:08Z) - Fourier Series Expansion Based Filter Parametrization for Equivariant
Convolutions [73.33133942934018]
2D filter parametrization technique plays an important role when designing equivariant convolutions.
New equivariant convolution method based on the proposed filter parametrization method, named F-Conv.
F-Conv evidently outperforms previous filter parametrization based method in image super-resolution task.
arXiv Detail & Related papers (2021-07-30T10:01:52Z) - Rethinking Differentiable Search for Mixed-Precision Neural Networks [83.55785779504868]
Low-precision networks with weights and activations quantized to low bit-width are widely used to accelerate inference on edge devices.
Current solutions are uniform, using identical bit-width for all filters.
This fails to account for the different sensitivities of different filters and is suboptimal.
Mixed-precision networks address this problem, by tuning the bit-width to individual filter requirements.
arXiv Detail & Related papers (2020-04-13T07:02:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.