Efficient Function Placement in Virtual Networks: An Online Learning Approach
- URL: http://arxiv.org/abs/2410.13696v1
- Date: Thu, 17 Oct 2024 16:03:43 GMT
- Title: Efficient Function Placement in Virtual Networks: An Online Learning Approach
- Authors: Wei Huang, Richard Combes, Hind Castel-Taleb, Badii Jouaber,
- Abstract summary: We propose a model for the virtual function placement problem and several novel algorithms using ideas based on multi-armed bandits.
We prove that these algorithms learn the optimal placement policy rapidly, and their regret grows at a rate at most $O( N M sqrtTln T )$ while respecting the feasibility constraints with high probability.
- Score: 7.206295719344847
- License:
- Abstract: We propose a model for the virtual function placement problem and several novel algorithms using ideas based on multi-armed bandits. We prove that these algorithms learn the optimal placement policy rapidly, and their regret grows at a rate at most $O( N M \sqrt{T\ln T} )$ while respecting the feasibility constraints with high probability. We show through numerical experiments that those algorithms both have good practical performance and modest computational complexity. Using the proposed acceleration technique, they can be used to learn in large networks where computational power is limited. Our experiments are fully reproducible, and the code is publicly available.
Related papers
- The Power of Resets in Online Reinforcement Learning [73.64852266145387]
We explore the power of simulators through online reinforcement learning with local simulator access (or, local planning)
We show that MDPs with low coverability can be learned in a sample-efficient fashion with only $Qstar$-realizability.
We show that the notorious Exogenous Block MDP problem is tractable under local simulator access.
arXiv Detail & Related papers (2024-04-23T18:09:53Z) - torchmSAT: A GPU-Accelerated Approximation To The Maximum Satisfiability
Problem [1.5850859526672516]
We derive a single differentiable function capable of approximating solutions for the Maximum Satisfiability Problem (MaxSAT)
We present a novel neural network architecture to model our differentiable function, and progressively solve MaxSAT using backpropagation.
arXiv Detail & Related papers (2024-02-06T02:33:00Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Adaptive Federated Minimax Optimization with Lower Complexities [82.51223883622552]
We propose an efficient adaptive minimax optimization algorithm (i.e., AdaFGDA) to solve these minimax problems.
It builds our momentum-based reduced and localSGD techniques, and it flexibly incorporate various adaptive learning rates.
arXiv Detail & Related papers (2022-11-14T12:32:18Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Training Neural Networks using SAT solvers [1.0152838128195465]
We propose an algorithm to explore the global optimisation method, using SAT solvers, for training a neural net.
In the experiments, we demonstrate the effectiveness of our algorithm against the ADAM optimiser in certain tasks like parity learning.
arXiv Detail & Related papers (2022-06-10T01:31:12Z) - Practical, Provably-Correct Interactive Learning in the Realizable
Setting: The Power of True Believers [12.09273192079783]
We consider interactive learning in the realizable setting and develop a general framework to handle problems ranging from best arm identification to active classification.
We design novel computationally efficient algorithms for the realizable setting that match the minimax lower bound up to logarithmic factors.
arXiv Detail & Related papers (2021-11-09T02:33:36Z) - Minimax Optimization with Smooth Algorithmic Adversaries [59.47122537182611]
We propose a new algorithm for the min-player against smooth algorithms deployed by an adversary.
Our algorithm is guaranteed to make monotonic progress having no limit cycles, and to find an appropriate number of gradient ascents.
arXiv Detail & Related papers (2021-06-02T22:03:36Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.