Online Learning for Function Placement in Serverless Computing
- URL: http://arxiv.org/abs/2410.13696v2
- Date: Tue, 03 Jun 2025 12:52:47 GMT
- Title: Online Learning for Function Placement in Serverless Computing
- Authors: Wei Huang, Richard Combes, Andrea Araldo, Hind Castel-Taleb, Badii Jouaber,
- Abstract summary: We study the placement of virtual functions aimed at minimizing the cost.<n>We propose a novel algorithm, using ideas based on multi-armed bandits.<n>We show through numerical experiments that the proposed algorithm both has good practical performance and modest computational complexity.
- Score: 6.810196737272974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the placement of virtual functions aimed at minimizing the cost. We propose a novel algorithm, using ideas based on multi-armed bandits. We prove that these algorithms learn the optimal placement policy rapidly, and their regret grows at a rate at most $O( N M \sqrt{T\ln T} )$ while respecting the feasibility constraints with high probability, where $T$ is total time slots, $M$ is the number of classes of function and $N$ is the number of computation nodes. We show through numerical experiments that the proposed algorithm both has good practical performance and modest computational complexity. We propose an acceleration technique that allows the algorithm to achieve good performance also in large networks where computational power is limited. Our experiments are fully reproducible, and the code is publicly available.
Related papers
- Practical $0.385$-Approximation for Submodular Maximization Subject to a Cardinality Constraint [18.290666675596984]
Non-monotone constrained submodular subimation plays a crucial role in various machine learning applications.
Existing algorithms often struggle with a trade-off between approximation guarantees and practical efficiency.
We present a novel algorithm that combines a guarantee of $0.385$-approximation with a low and practical query complexity of $O(n+k2)$.
arXiv Detail & Related papers (2024-05-22T20:56:57Z) - The Power of Resets in Online Reinforcement Learning [73.64852266145387]
We explore the power of simulators through online reinforcement learning with local simulator access (or, local planning)
We show that MDPs with low coverability can be learned in a sample-efficient fashion with only $Qstar$-realizability.
We show that the notorious Exogenous Block MDP problem is tractable under local simulator access.
arXiv Detail & Related papers (2024-04-23T18:09:53Z) - torchmSAT: A GPU-Accelerated Approximation To The Maximum Satisfiability
Problem [1.5850859526672516]
We derive a single differentiable function capable of approximating solutions for the Maximum Satisfiability Problem (MaxSAT)
We present a novel neural network architecture to model our differentiable function, and progressively solve MaxSAT using backpropagation.
arXiv Detail & Related papers (2024-02-06T02:33:00Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Provably Efficient Reinforcement Learning via Surprise Bound [66.15308700413814]
We propose a provably efficient reinforcement learning algorithm (both computationally and statistically) with general value function approximations.
Our algorithm achieves reasonable regret bounds when applied to both the linear setting and the sparse high-dimensional linear setting.
arXiv Detail & Related papers (2023-02-22T20:21:25Z) - Adaptive Federated Minimax Optimization with Lower Complexities [82.51223883622552]
We propose an efficient adaptive minimax optimization algorithm (i.e., AdaFGDA) to solve these minimax problems.
It builds our momentum-based reduced and localSGD techniques, and it flexibly incorporate various adaptive learning rates.
arXiv Detail & Related papers (2022-11-14T12:32:18Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Robust Methods for High-Dimensional Linear Learning [0.0]
We propose statistically robust and computationally efficient linear learning methods in the high-dimensional batch setting.
We instantiate our framework on several applications including vanilla sparse, group-sparse and low-rank matrix recovery.
For vanilla $s$-sparsity, we are able to reach the $slog (d)/n$ rate under heavy-tails and $eta$-corruption.
arXiv Detail & Related papers (2022-08-10T17:00:41Z) - Training Neural Networks using SAT solvers [1.0152838128195465]
We propose an algorithm to explore the global optimisation method, using SAT solvers, for training a neural net.
In the experiments, we demonstrate the effectiveness of our algorithm against the ADAM optimiser in certain tasks like parity learning.
arXiv Detail & Related papers (2022-06-10T01:31:12Z) - PDE-Based Optimal Strategy for Unconstrained Online Learning [40.61498562988079]
We present a framework that generates time-varying potential functions by solving a Partial Differential Equation (PDE)
Our framework recovers some classical potentials, and more importantly provides a systematic approach to design new ones.
This is the first parameter-free algorithm with optimal leading constant.
arXiv Detail & Related papers (2022-01-19T22:21:21Z) - Nearly Optimal Policy Optimization with Stable at Any Time Guarantee [53.155554415415445]
Policy-based method in citetshani 2020optimistic is only $tildeO(sqrtSAH3K + sqrtAH4K)$ where $S$ is the number of states, $A$ is the number of actions, $H$ is the horizon, and $K$ is the number of episodes, and there is a $sqrtSH$ gap compared with the information theoretic lower bound $tildeOmega(sqrtSAH
arXiv Detail & Related papers (2021-12-21T01:54:17Z) - Practical, Provably-Correct Interactive Learning in the Realizable
Setting: The Power of True Believers [12.09273192079783]
We consider interactive learning in the realizable setting and develop a general framework to handle problems ranging from best arm identification to active classification.
We design novel computationally efficient algorithms for the realizable setting that match the minimax lower bound up to logarithmic factors.
arXiv Detail & Related papers (2021-11-09T02:33:36Z) - Randomized Exploration for Reinforcement Learning with General Value
Function Approximation [122.70803181751135]
We propose a model-free reinforcement learning algorithm inspired by the popular randomized least squares value iteration (RLSVI) algorithm.
Our algorithm drives exploration by simply perturbing the training data with judiciously chosen i.i.d. scalar noises.
We complement the theory with an empirical evaluation across known difficult exploration tasks.
arXiv Detail & Related papers (2021-06-15T02:23:07Z) - Minimax Optimization with Smooth Algorithmic Adversaries [59.47122537182611]
We propose a new algorithm for the min-player against smooth algorithms deployed by an adversary.
Our algorithm is guaranteed to make monotonic progress having no limit cycles, and to find an appropriate number of gradient ascents.
arXiv Detail & Related papers (2021-06-02T22:03:36Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - On Function Approximation in Reinforcement Learning: Optimism in the
Face of Large State Spaces [208.67848059021915]
We study the exploration-exploitation tradeoff at the core of reinforcement learning.
In particular, we prove that the complexity of the function class $mathcalF$ characterizes the complexity of the function.
Our regret bounds are independent of the number of episodes.
arXiv Detail & Related papers (2020-11-09T18:32:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.