Movie Gen: A Cast of Media Foundation Models
- URL: http://arxiv.org/abs/2410.13720v1
- Date: Thu, 17 Oct 2024 16:22:46 GMT
- Title: Movie Gen: A Cast of Media Foundation Models
- Authors: Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv Vyas, Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, David Yan, Dhruv Choudhary, Dingkang Wang, Geet Sethi, Guan Pang, Haoyu Ma, Ishan Misra, Ji Hou, Jialiang Wang, Kiran Jagadeesh, Kunpeng Li, Luxin Zhang, Mannat Singh, Mary Williamson, Matt Le, Matthew Yu, Mitesh Kumar Singh, Peizhao Zhang, Peter Vajda, Quentin Duval, Rohit Girdhar, Roshan Sumbaly, Sai Saketh Rambhatla, Sam Tsai, Samaneh Azadi, Samyak Datta, Sanyuan Chen, Sean Bell, Sharadh Ramaswamy, Shelly Sheynin, Siddharth Bhattacharya, Simran Motwani, Tao Xu, Tianhe Li, Tingbo Hou, Wei-Ning Hsu, Xi Yin, Xiaoliang Dai, Yaniv Taigman, Yaqiao Luo, Yen-Cheng Liu, Yi-Chiao Wu, Yue Zhao, Yuval Kirstain, Zecheng He, Zijian He, Albert Pumarola, Ali Thabet, Artsiom Sanakoyeu, Arun Mallya, Baishan Guo, Boris Araya, Breena Kerr, Carleigh Wood, Ce Liu, Cen Peng, Dimitry Vengertsev, Edgar Schonfeld, Elliot Blanchard, Felix Juefei-Xu, Fraylie Nord, Jeff Liang, John Hoffman, Jonas Kohler, Kaolin Fire, Karthik Sivakumar, Lawrence Chen, Licheng Yu, Luya Gao, Markos Georgopoulos, Rashel Moritz, Sara K. Sampson, Shikai Li, Simone Parmeggiani, Steve Fine, Tara Fowler, Vladan Petrovic, Yuming Du,
- Abstract summary: We present Movie Gen, a cast of foundation models that generates high-quality, 1080p HD videos with different aspect ratios and synchronized audio.
We show additional capabilities such as precise instruction-based video editing and generation of personalized videos based on a user's image.
- Score: 133.41504332082667
- License:
- Abstract: We present Movie Gen, a cast of foundation models that generates high-quality, 1080p HD videos with different aspect ratios and synchronized audio. We also show additional capabilities such as precise instruction-based video editing and generation of personalized videos based on a user's image. Our models set a new state-of-the-art on multiple tasks: text-to-video synthesis, video personalization, video editing, video-to-audio generation, and text-to-audio generation. Our largest video generation model is a 30B parameter transformer trained with a maximum context length of 73K video tokens, corresponding to a generated video of 16 seconds at 16 frames-per-second. We show multiple technical innovations and simplifications on the architecture, latent spaces, training objectives and recipes, data curation, evaluation protocols, parallelization techniques, and inference optimizations that allow us to reap the benefits of scaling pre-training data, model size, and training compute for training large scale media generation models. We hope this paper helps the research community to accelerate progress and innovation in media generation models. All videos from this paper are available at https://go.fb.me/MovieGenResearchVideos.
Related papers
- Step-Video-T2V Technical Report: The Practice, Challenges, and Future of Video Foundation Model [133.01510927611452]
We present Step-Video-T2V, a text-to-video pre-trained model with 30Bational parameters and the ability to generate videos up to 204 frames in length.
A deep compression Vari Autoencoder, Video-VAE, is designed for video generation tasks, achieving 16x16 spatial and 8x temporal compression ratios.
Step-Video-T2V's performance is evaluated on a novel video generation benchmark, Step-Video-T2V-Eval, demonstrating its state-of-the-art text-to-video quality.
arXiv Detail & Related papers (2025-02-14T15:58:10Z) - VideoAuteur: Towards Long Narrative Video Generation [22.915448471769384]
We present a large-scale cooking video dataset designed to advance long-form narrative generation in the cooking domain.
We introduce a Long Narrative Video Director to enhance both visual and semantic coherence in generated videos.
Our method demonstrates substantial improvements in generating visually detailed and semantically aligneds.
arXiv Detail & Related papers (2025-01-10T18:52:11Z) - InternVideo2: Scaling Foundation Models for Multimodal Video Understanding [51.129913789991924]
InternVideo2 is a new family of video foundation models (FM) that achieve state-of-the-art results in video recognition, video-speech tasks, and video-centric tasks.
Our core design is a progressive training approach that unifies the masked video modeling, cross contrastive learning, and prediction token, scaling up to 6B video size.
arXiv Detail & Related papers (2024-03-22T17:57:42Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - VideoPoet: A Large Language Model for Zero-Shot Video Generation [78.57171527944774]
VideoPoet is a language model capable of synthesizing high-quality video with matching audio.
VideoPoet employs a decoder-only transformer architecture that processes multimodal inputs.
arXiv Detail & Related papers (2023-12-21T18:46:41Z) - Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large
Datasets [36.95521842177614]
We present Stable Video Diffusion - a latent video diffusion model for high-resolution, state-of-the-art text-to-video and image-to-video generation.
We identify and evaluate three different stages for successful training of video LDMs: text-to-image pretraining, video pretraining, and high-quality video finetuning.
arXiv Detail & Related papers (2023-11-25T22:28:38Z) - Video Generation Beyond a Single Clip [76.5306434379088]
Video generation models can only generate video clips that are relatively short compared with the length of real videos.
To generate long videos covering diverse content and multiple events, we propose to use additional guidance to control the video generation process.
The proposed approach is complementary to existing efforts on video generation, which focus on generating realistic video within a fixed time window.
arXiv Detail & Related papers (2023-04-15T06:17:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.