DPFedBank: Crafting a Privacy-Preserving Federated Learning Framework for Financial Institutions with Policy Pillars
- URL: http://arxiv.org/abs/2410.13753v1
- Date: Thu, 17 Oct 2024 16:51:56 GMT
- Title: DPFedBank: Crafting a Privacy-Preserving Federated Learning Framework for Financial Institutions with Policy Pillars
- Authors: Peilin He, Chenkai Lin, Isabella Montoya,
- Abstract summary: This paper presents DPFedBank, an innovative framework enabling financial institutions to collaboratively develop machine learning models.
DPFedBank is designed to address the unique privacy and security challenges associated with financial data, allowing institutions to share insights without exposing sensitive information.
- Score: 0.09363323206192666
- License:
- Abstract: In recent years, the financial sector has faced growing pressure to adopt advanced machine learning models to derive valuable insights while preserving data privacy. However, the highly sensitive nature of financial data presents significant challenges to sharing and collaboration. This paper presents DPFedBank, an innovative framework enabling financial institutions to collaboratively develop machine learning models while ensuring robust data privacy through Local Differential Privacy (LDP) mechanisms. DPFedBank is designed to address the unique privacy and security challenges associated with financial data, allowing institutions to share insights without exposing sensitive information. By leveraging LDP, the framework ensures that data remains confidential even during collaborative processes, providing a crucial solution for privacy-aware machine learning in finance. We conducted an in-depth evaluation of the potential vulnerabilities within this framework and developed a comprehensive set of policies aimed at mitigating these risks. The proposed policies effectively address threats posed by malicious clients, compromised servers, inherent weaknesses in existing Differential Privacy-Federated Learning (DP-FL) frameworks, and sophisticated external adversaries. Unlike existing DP-FL approaches, DPFedBank introduces a novel combination of adaptive LDP mechanisms and advanced cryptographic techniques specifically tailored for financial data, which significantly enhances privacy while maintaining model utility. Key security enhancements include the implementation of advanced authentication protocols, encryption techniques for secure data exchange, and continuous monitoring systems to detect and respond to malicious activities in real-time.
Related papers
- Privacy-Preserving Customer Support: A Framework for Secure and Scalable Interactions [0.0]
This paper introduces the Privacy-Preserving Zero-Shot Learning (PP-ZSL) framework, a novel approach leveraging large language models (LLMs) in a zero-shot learning mode.
Unlike conventional machine learning methods, PP-ZSL eliminates the need for local training on sensitive data by utilizing pre-trained LLMs to generate responses directly.
The framework incorporates real-time data anonymization to redact or mask sensitive information, retrieval-augmented generation (RAG) for domain-specific query resolution, and robust post-processing to ensure compliance with regulatory standards.
arXiv Detail & Related papers (2024-12-10T17:20:47Z) - Balancing Confidentiality and Transparency for Blockchain-based Process-Aware Information Systems [46.404531555921906]
We propose an architecture for blockchain-based PAISs aimed at preserving both confidentiality and transparency.
Smart contracts enact, enforce and store public interactions, while attribute-based encryption techniques are adopted to specify access grants to confidential information.
arXiv Detail & Related papers (2024-12-07T20:18:36Z) - Towards Secure and Private AI: A Framework for Decentralized Inference [14.526663289437584]
Large multimodal foundational models present challenges in scalability, reliability, and potential misuse.
Decentralized systems offer a solution by distributing workload and mitigating central points of failure.
We address these challenges with a comprehensive framework designed for responsible AI development.
arXiv Detail & Related papers (2024-07-28T05:09:17Z) - State-of-the-Art Approaches to Enhancing Privacy Preservation of Machine Learning Datasets: A Survey [0.9208007322096533]
This paper examines the evolving landscape of machine learning (ML) and its profound impact across various sectors.
It focuses on the emerging field of Privacy-preserving Machine Learning (PPML)
As ML applications become increasingly integral to industries like telecommunications, financial technology, and surveillance, they raise significant privacy concerns.
arXiv Detail & Related papers (2024-02-25T17:31:06Z) - Locally Differentially Private Embedding Models in Distributed Fraud
Prevention Systems [2.001149416674759]
We present a collaborative deep learning framework for fraud prevention, designed from a privacy standpoint, and awarded at the recent PETs Prize Challenges.
We leverage latent embedded representations of varied-length transaction sequences, along with local differential privacy, in order to construct a data release mechanism which can securely inform externally hosted fraud and anomaly detection models.
We assess our contribution on two distributed data sets donated by large payment networks, and demonstrate robustness to popular inference-time attacks, along with utility-privacy trade-offs analogous to published work in alternative application domains.
arXiv Detail & Related papers (2024-01-03T14:04:18Z) - Security and Privacy Issues of Federated Learning [0.0]
Federated Learning (FL) has emerged as a promising approach to address data privacy and confidentiality concerns.
This paper presents a comprehensive taxonomy of security and privacy challenges in Federated Learning (FL) across various machine learning models.
arXiv Detail & Related papers (2023-07-22T22:51:07Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
We consider a federated data analytics problem in which a server coordinates the collaborative data analysis of multiple users with privacy concerns and limited communication capability.
We study the local differential privacy guarantees of discrete-valued mechanisms with finite output space through the lens of $f$-differential privacy (DP)
More specifically, we advance the existing literature by deriving tight $f$-DP guarantees for a variety of discrete-valued mechanisms.
arXiv Detail & Related papers (2023-02-19T16:58:53Z) - Privacy-Preserving Joint Edge Association and Power Optimization for the
Internet of Vehicles via Federated Multi-Agent Reinforcement Learning [74.53077322713548]
We investigate the privacy-preserving joint edge association and power allocation problem.
The proposed solution strikes a compelling trade-off, while preserving a higher privacy level than the state-of-the-art solutions.
arXiv Detail & Related papers (2023-01-26T10:09:23Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
Federated Learning (FL) allows the data owner to maintain data governance and perform model training locally without having to share their data.
FL and related techniques are often described as privacy-preserving.
We explain why this term is not appropriate and outline the risks associated with over-reliance on protocols that were not designed with formal definitions of privacy in mind.
arXiv Detail & Related papers (2021-12-21T08:44:05Z) - Trustworthy AI [75.99046162669997]
Brittleness to minor adversarial changes in the input data, ability to explain the decisions, address the bias in their training data, are some of the most prominent limitations.
We propose the tutorial on Trustworthy AI to address six critical issues in enhancing user and public trust in AI systems.
arXiv Detail & Related papers (2020-11-02T20:04:18Z) - PCAL: A Privacy-preserving Intelligent Credit Risk Modeling Framework
Based on Adversarial Learning [111.19576084222345]
This paper proposes a framework of Privacy-preserving Credit risk modeling based on Adversarial Learning (PCAL)
PCAL aims to mask the private information inside the original dataset, while maintaining the important utility information for the target prediction task performance.
Results indicate that PCAL can learn an effective, privacy-free representation from user data, providing a solid foundation towards privacy-preserving machine learning for credit risk analysis.
arXiv Detail & Related papers (2020-10-06T07:04:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.