論文の概要: Modeling Future Conversation Turns to Teach LLMs to Ask Clarifying Questions
- arxiv url: http://arxiv.org/abs/2410.13788v1
- Date: Thu, 17 Oct 2024 17:29:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:19:59.672918
- Title: Modeling Future Conversation Turns to Teach LLMs to Ask Clarifying Questions
- Title(参考訳): 未来の会話のモデリングがLLMの学習に転換, 質問の明確化をめざす
- Authors: Michael J. Q. Zhang, W. Bradley Knox, Eunsol Choi,
- Abstract要約: 今後,予測結果のシミュレーションにより,選好ラベルを割り当てることを提案する。
これにより、LLMは、将来の順番で各ユーザの解釈に合わせた応答を生成することができるとき、明確な質問をすることを学ぶことができる。
我々は,各ユーザの解釈と期待された回答を再現できる質問を明確にする能力に基づいて,システム評価を行う。
- 参考スコア(独自算出の注目度): 45.04582353648683
- License:
- Abstract: Large language models (LLMs) must often respond to highly ambiguous user requests. In such cases, the LLM's best response may be to ask a clarifying question to elicit more information. We observe existing LLMs often respond by presupposing a single interpretation of such ambiguous requests, frustrating users who intended a different interpretation. We speculate this is caused by current preference data labeling practice, where LLM responses are evaluated only on their prior contexts. To address this, we propose to assign preference labels by simulating their expected outcomes in the future turns. This allows LLMs to learn to ask clarifying questions when it can generate responses that are tailored to each user interpretation in future turns. In experiments on open-domain QA, we compare systems that trained using our proposed preference labeling methods against standard methods, which assign preferences based on only prior context. We evaluate systems based on their ability to ask clarifying questions that can recover each user's interpretation and expected answer, and find that our training with our proposed method trains LLMs to ask clarifying questions with a 5% improvement in F1 measured against the answer set from different interpretations of each query
- Abstract(参考訳): 大規模言語モデル(LLM)は、しばしば非常にあいまいなユーザー要求に応答しなければならない。
そのような場合、LLMの最もよい反応は、より詳細な情報を引き出すための明確な質問をすることかもしれない。
我々は,このような曖昧な要求の単一解釈を前提とすることで,既存のLCMの応答をよく観察し,異なる解釈を意図したユーザをいらいらさせる。
提案手法は,LLM応答を従来の文脈でのみ評価する,現在の嗜好データラベリング手法によるものであると推測する。
そこで本研究では,今後期待される結果をシミュレーションすることで,選好ラベルを割り当てることを提案する。
これによってLLMは、将来の順番で各ユーザの解釈に合わせた応答を生成することができるのか、明確な質問を学べるようになる。
オープンドメインQAの実験では,提案手法を用いて学習したシステムと,事前コンテキストのみに基づいて選好を割り当てる標準手法を比較した。
提案手法を用いた学習では,各クエリの異なる解釈から設定した回答に対して,F1の5%改善を施して,明解質問を学習した。
関連論文リスト
- Utilize the Flow before Stepping into the Same River Twice: Certainty Represented Knowledge Flow for Refusal-Aware Instruction Tuning [68.57166425493283]
リファレンス・アウェア・インストラクション・コンストラクション(CRaFT)のための確実性表現型知識フローについて紹介する。
CRaFTは、応答の確実性を取り入れて、データを選択的にフィルタリングし、修正し、静的な競合を減らす。
オープンエンド質問応答と複数選択質問課題について広範な実験を行った。
論文 参考訳(メタデータ) (2024-10-09T14:12:51Z) - Understanding the Relationship between Prompts and Response Uncertainty in Large Language Models [55.332004960574004]
大規模言語モデル(LLM)は意思決定に広く使用されているが、特に医療などの重要なタスクにおける信頼性は十分に確立されていない。
本稿では,LSMが生成する応答の不確実性が,入力プロンプトで提供される情報とどのように関連しているかを検討する。
本稿では,LLMが応答を生成する方法を説明し,プロンプトと応答の不確実性の関係を理解するためのプロンプト応答の概念モデルを提案する。
論文 参考訳(メタデータ) (2024-07-20T11:19:58Z) - Open-LLM-Leaderboard: From Multi-choice to Open-style Questions for LLMs Evaluation, Benchmark, and Arena [23.264049073539663]
大規模言語モデル(LLM)を評価するために、MCQ(Multiple-choice Question)が頻繁に使用される。
LLMは、A/B/C/Dのような特定の解選択IDを本質的に好んでいるかもしれない。
本研究は,これらの課題に対処し,完全にオープンな質問を通じて新たなLCM評価ベンチマークを確立することを目的としている。
論文 参考訳(メタデータ) (2024-06-11T17:59:47Z) - Crafting Interpretable Embeddings by Asking LLMs Questions [89.49960984640363]
大規模言語モデル(LLM)は、自然言語処理タスクの増大に対して、テキスト埋め込みを急速に改善した。
質問応答埋め込み (QA-Emb) を導入し, 各特徴がLLMに対して質問された質問に対する回答を表す。
我々はQA-Embを用いて、言語刺激に対するfMRIボクセル応答を予測するための解釈可能なモデルを柔軟に生成する。
論文 参考訳(メタデータ) (2024-05-26T22:30:29Z) - CLARINET: Augmenting Language Models to Ask Clarification Questions for Retrieval [52.134133938779776]
CLARINETは,回答が正しい候補の確実性を最大化する質問を選択することで,情報的明確化を問うシステムである。
提案手法は,大規模言語モデル(LLM)を検索分布の条件付きで拡張し,各ターンで真の候補のランクを最大化する問題を生成する。
論文 参考訳(メタデータ) (2024-04-28T18:21:31Z) - UnibucLLM: Harnessing LLMs for Automated Prediction of Item Difficulty and Response Time for Multiple-Choice Questions [25.877058354902953]
本研究は,BEA 2024共有タスクにおけるUSMLE多項目質問(MCQ)の項目難易度と応答時間を予測するために,LLM(Large Language Models)に基づく新しいデータ拡張手法を提案する。
我々のアプローチは、ゼロショットLLMからの回答をデータセットに拡張し、6つの代替機能の組み合わせに基づいてトランスフォーマーベースのモデルを採用することに基づいている。
論文 参考訳(メタデータ) (2024-04-20T10:41:02Z) - Aligning Language Models to Explicitly Handle Ambiguity [22.078095273053506]
我々は,あいまいなクエリを扱うために,言語モデルを整列する新しいパイプラインであるAlignment with Perceived Ambiguity (APA)を提案する。
質問応答データセットの実験結果から、APAはLLMに対して、あいまいなクエリを明示的に検出し、管理する権限を持つことが示された。
我々の発見は、APAがゴールドスタンダードラベルのトレーニング、特にアウト・オブ・ディストリビューションのシナリオで優れていることを証明している。
論文 参考訳(メタデータ) (2024-04-18T07:59:53Z) - Enhancing Answer Selection in Community Question Answering with
Pre-trained and Large Language Models [0.9065034043031668]
まず,質問応答型クロスアテンションネットワーク(QAN)を提案する。
次に,大規模言語モデル(LLM)を用いて,知識拡張による回答選択を行う。
実験の結果、QANモデルが2つのデータセット、SemEval2015とSemEval 2017の最先端のパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-11-29T10:24:50Z) - Improving Zero-shot Visual Question Answering via Large Language Models
with Reasoning Question Prompts [22.669502403623166]
本稿では,VQAタスクに対する推論質問プロンプトを提案する。
自己完結した質問は、教師なし質問セットモジュールを介して推論された質問プロンプトとして生成する。
各推論質問は、元の質問の意図を明確に示す。
そして、回答整合性として働く信頼度スコアに関連する候補回答をLSMに入力する。
論文 参考訳(メタデータ) (2023-11-15T15:40:46Z) - FreshLLMs: Refreshing Large Language Models with Search Engine
Augmentation [92.43001160060376]
本研究では,現在の世界知識をテストする質問に答える文脈において,大規模言語モデル(LLM)の事実性について検討する。
多様な質問や回答のタイプを含む新しい動的QAベンチマークであるFreshQAを紹介する。
我々は,2モード評価法により,閉じたLLMとオープンソースのLLMの多種多様な配列をベンチマークし,その正しさと幻覚の両面を計測する。
これらの結果に触発されたFreshPromptは、FreshQA上でのLLMの性能を大幅に向上させる単純な数ショットプロンプトである。
論文 参考訳(メタデータ) (2023-10-05T00:04:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。