Artificial Kuramoto Oscillatory Neurons
- URL: http://arxiv.org/abs/2410.13821v2
- Date: Fri, 14 Feb 2025 05:29:53 GMT
- Title: Artificial Kuramoto Oscillatory Neurons
- Authors: Takeru Miyato, Sindy Löwe, Andreas Geiger, Max Welling,
- Abstract summary: It has long been known in both neuroscience and AI that ''binding'' between neurons leads to a form of competitive learning.
We introduce Artificial rethinking together with arbitrary connectivity designs such as fully connected convolutional, or attentive mechanisms.
We show that this idea provides performance improvements across a wide spectrum of tasks such as unsupervised object discovery, adversarial robustness, uncertainty, and reasoning.
- Score: 65.16453738828672
- License:
- Abstract: It has long been known in both neuroscience and AI that ``binding'' between neurons leads to a form of competitive learning where representations are compressed in order to represent more abstract concepts in deeper layers of the network. More recently, it was also hypothesized that dynamic (spatiotemporal) representations play an important role in both neuroscience and AI. Building on these ideas, we introduce Artificial Kuramoto Oscillatory Neurons (AKOrN) as a dynamical alternative to threshold units, which can be combined with arbitrary connectivity designs such as fully connected, convolutional, or attentive mechanisms. Our generalized Kuramoto updates bind neurons together through their synchronization dynamics. We show that this idea provides performance improvements across a wide spectrum of tasks such as unsupervised object discovery, adversarial robustness, calibrated uncertainty quantification, and reasoning. We believe that these empirical results show the importance of rethinking our assumptions at the most basic neuronal level of neural representation, and in particular show the importance of dynamical representations. Code: https://github.com/autonomousvision/akorn Project page: https://github.com/takerum/akorn_project_page
Related papers
- Discovering Chunks in Neural Embeddings for Interpretability [53.80157905839065]
We propose leveraging the principle of chunking to interpret artificial neural population activities.
We first demonstrate this concept in recurrent neural networks (RNNs) trained on artificial sequences with imposed regularities.
We identify similar recurring embedding states corresponding to concepts in the input, with perturbations to these states activating or inhibiting the associated concepts.
arXiv Detail & Related papers (2025-02-03T20:30:46Z) - Formation of Representations in Neural Networks [8.79431718760617]
How complex, structured, and transferable representations emerge in modern neural networks has remained a mystery.
We propose the Canonical Representation Hypothesis (CRH), which posits a set of six alignment relations to universally govern the formation of representations.
We show that the breaking of CRH leads to the emergence of reciprocal power-law relations between R, W, and G, which we refer to as the Polynomial Alignment Hypothesis (PAH)
arXiv Detail & Related papers (2024-10-03T21:31:01Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
We present a physiologically inspired speech recognition architecture compatible and scalable with deep learning frameworks.
We show end-to-end gradient descent training leads to the emergence of neural oscillations in the central spiking neural network.
Our findings highlight the crucial inhibitory role of feedback mechanisms, such as spike frequency adaptation and recurrent connections, in regulating and synchronising neural activity to improve recognition performance.
arXiv Detail & Related papers (2024-04-22T09:40:07Z) - Learn to integrate parts for whole through correlated neural variability [8.173681663544757]
Sensory perception originates from the responses of sensory neurons, which react to a collection of sensory signals linked to physical attributes of a singular perceptual object.
Unraveling how the brain extracts perceptual information from these neuronal responses is a pivotal challenge in both computational neuroscience and machine learning.
We introduce a statistical mechanical theory, where perceptual information is first encoded in the correlated variability of sensory neurons and then reformatted into the firing rates of downstream neurons.
arXiv Detail & Related papers (2024-01-01T13:05:29Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Learning with Chemical versus Electrical Synapses -- Does it Make a
Difference? [61.85704286298537]
Bio-inspired neural networks have the potential to advance our understanding of neural computation and improve the state-of-the-art of AI systems.
We conduct experiments with autonomous lane-keeping through a photorealistic autonomous driving simulator to evaluate their performance under diverse conditions.
arXiv Detail & Related papers (2023-11-21T13:07:20Z) - Learning to Act through Evolution of Neural Diversity in Random Neural
Networks [9.387749254963595]
In most artificial neural networks (ANNs), neural computation is abstracted to an activation function that is usually shared between all neurons.
We propose the optimization of neuro-centric parameters to attain a set of diverse neurons that can perform complex computations.
arXiv Detail & Related papers (2023-05-25T11:33:04Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Brain-inspired Graph Spiking Neural Networks for Commonsense Knowledge
Representation and Reasoning [11.048601659933249]
How neural networks in the human brain represent commonsense knowledge is an important research topic in neuroscience, cognitive science, psychology, and artificial intelligence.
This work investigates how population encoding and spiking timing-dependent plasticity (STDP) mechanisms can be integrated into the learning of spiking neural networks.
The neuron populations of different communities together constitute the entire commonsense knowledge graph, forming a giant graph spiking neural network.
arXiv Detail & Related papers (2022-07-11T05:22:38Z) - Drop, Swap, and Generate: A Self-Supervised Approach for Generating
Neural Activity [33.06823702945747]
We introduce a novel unsupervised approach for learning disentangled representations of neural activity called Swap-VAE.
Our approach combines a generative modeling framework with an instance-specific alignment loss.
We show that it is possible to build representations that disentangle neural datasets along relevant latent dimensions linked to behavior.
arXiv Detail & Related papers (2021-11-03T16:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.