Neural Learning Rules from Associative Networks Theory
- URL: http://arxiv.org/abs/2503.19922v1
- Date: Tue, 11 Mar 2025 11:44:04 GMT
- Title: Neural Learning Rules from Associative Networks Theory
- Authors: Daniele Lotito,
- Abstract summary: Associative networks theory is providing tools to interpret update rules of artificial neural networks.<n> deriving neural learning rules from a solid theory remains a fundamental challenge.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Associative networks theory is increasingly providing tools to interpret update rules of artificial neural networks. At the same time, deriving neural learning rules from a solid theory remains a fundamental challenge. We make some steps in this direction by considering general energy-based associative networks of continuous neurons and synapses that evolve in multiple time scales. We use the separation of these timescales to recover a limit in which the activation of the neurons, the energy of the system and the neural dynamics can all be recovered from a generating function. By allowing the generating function to depend on memories, we recover the conventional Hebbian modeling choice for the interaction strength between neurons. Finally, we propose and discuss a dynamics of memories that enables us to include learning in this framework.
Related papers
- Discovering Chunks in Neural Embeddings for Interpretability [53.80157905839065]
We propose leveraging the principle of chunking to interpret artificial neural population activities.<n>We first demonstrate this concept in recurrent neural networks (RNNs) trained on artificial sequences with imposed regularities.<n>We identify similar recurring embedding states corresponding to concepts in the input, with perturbations to these states activating or inhibiting the associated concepts.
arXiv Detail & Related papers (2025-02-03T20:30:46Z) - Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
It has long been known in both neuroscience and AI that ''binding'' between neurons leads to a form of competitive learning.<n>We introduce Artificial rethinking together with arbitrary connectivity designs such as fully connected convolutional, or attentive mechanisms.<n>We show that this idea provides performance improvements across a wide spectrum of tasks such as unsupervised object discovery, adversarial robustness, uncertainty, and reasoning.
arXiv Detail & Related papers (2024-10-17T17:47:54Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Expressivity of Spiking Neural Networks [15.181458163440634]
We study the capabilities of spiking neural networks where information is encoded in the firing time of neurons.
In contrast to ReLU networks, we prove that spiking neural networks can realize both continuous and discontinuous functions.
arXiv Detail & Related papers (2023-08-16T08:45:53Z) - Learning to Act through Evolution of Neural Diversity in Random Neural
Networks [9.387749254963595]
In most artificial neural networks (ANNs), neural computation is abstracted to an activation function that is usually shared between all neurons.
We propose the optimization of neuro-centric parameters to attain a set of diverse neurons that can perform complex computations.
arXiv Detail & Related papers (2023-05-25T11:33:04Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Training spiking neural networks using reinforcement learning [0.0]
We propose biologically-plausible alternatives to backpropagation to facilitate the training of spiking neural networks.
We focus on investigating the candidacy of reinforcement learning rules in solving the spatial and temporal credit assignment problems.
We compare and contrast the two approaches by applying them to traditional RL domains such as gridworld, cartpole and mountain car.
arXiv Detail & Related papers (2020-05-12T17:40:36Z) - Controlling Recurrent Neural Networks by Conceptors [0.5439020425818999]
I propose a mechanism of neurodynamical organization, called conceptors, which unites nonlinear dynamics with basic principles of conceptual abstraction and logic.<n>It becomes possible to learn, store, abstract, focus, morph, generalize, de-noise and recognize a large number of dynamical patterns within a single neural system.
arXiv Detail & Related papers (2014-03-13T18:58:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.