COOL: Efficient and Reliable Chain-Oriented Objective Logic with Neural Networks Feedback Control for Program Synthesis
- URL: http://arxiv.org/abs/2410.13874v2
- Date: Thu, 24 Oct 2024 12:16:31 GMT
- Title: COOL: Efficient and Reliable Chain-Oriented Objective Logic with Neural Networks Feedback Control for Program Synthesis
- Authors: Jipeng Han,
- Abstract summary: Chain of Logic (CoL) organizes synthesis stages into a chain and provides precise control to guide the synthesis process.
Our approach modularizes synthesis and mitigates the impact of neural network mispredictions.
- Score: 0.0
- License:
- Abstract: Program synthesis methods, whether formal or neural-based, lack fine-grained control and flexible modularity, which limits their adaptation to complex software development. These limitations stem from rigid Domain-Specific Language (DSL) frameworks and neural network incorrect predictions. To this end, we propose the Chain of Logic (CoL), which organizes synthesis stages into a chain and provides precise heuristic control to guide the synthesis process. Furthermore, by integrating neural networks with libraries and introducing a Neural Network Feedback Control (NNFC) mechanism, our approach modularizes synthesis and mitigates the impact of neural network mispredictions. Experiments on relational and symbolic synthesis tasks show that CoL significantly enhances the efficiency and reliability of DSL program synthesis across multiple metrics. Specifically, CoL improves accuracy by 70% while reducing tree operations by 91% and time by 95%. Additionally, NNFC further boosts accuracy by 6%, with a 64% reduction in tree operations under challenging conditions such as insufficient training data, increased difficulty, and multidomain synthesis. These improvements confirm COOL as a highly efficient and reliable program synthesis framework.
Related papers
- An Automata-Theoretic Approach to Synthesizing Binarized Neural Networks [13.271286153792058]
Quantized neural networks (QNNs) have been developed, with binarized neural networks (BNNs) restricted to binary values as a special case.
This paper presents an automata-theoretic approach to synthesizing BNNs that meet designated properties.
arXiv Detail & Related papers (2023-07-29T06:27:28Z) - Neural Speech Synthesis on a Shoestring: Improving the Efficiency of
LPCNet [35.44634252321666]
We improve the efficiency of LPCNet to make it usable on a wide variety of devices.
We demonstrate an improvement in synthesis quality while operating 2.5x faster.
The resulting open-source LPCNet algorithm can perform real-time neural synthesis on most existing phones and is even usable in some embedded devices.
arXiv Detail & Related papers (2022-02-22T20:42:00Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z) - Learning in Deep Neural Networks Using a Biologically Inspired Optimizer [5.144809478361604]
We propose a novel biologically inspired for artificial (ANNs) and spiking neural networks (SNNs)
GRAPES implements a weight-distribution dependent modulation of the error signal at each node of the neural network.
We show that this biologically inspired mechanism leads to a systematic improvement of the convergence rate of the network, and substantially improves classification accuracy of ANNs and SNNs.
arXiv Detail & Related papers (2021-04-23T13:50:30Z) - Toward Neural-Network-Guided Program Synthesis and Verification [26.706421573322952]
We propose a novel framework of program and invariant synthesis called neural network-guided synthesis.
We first show that, by designing and training neural networks, we can extract logical formulas over integers from the weights and biases of the trained neural networks.
Based on the idea, we have implemented a tool to synthesize formulas from positive/negative examples and implication constraints.
arXiv Detail & Related papers (2021-03-17T03:09:05Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
We develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL)
We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner.
arXiv Detail & Related papers (2020-07-27T12:38:37Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Toward fast and accurate human pose estimation via soft-gated skip
connections [97.06882200076096]
This paper is on highly accurate and highly efficient human pose estimation.
We re-analyze this design choice in the context of improving both the accuracy and the efficiency over the state-of-the-art.
Our model achieves state-of-the-art results on the MPII and LSP datasets.
arXiv Detail & Related papers (2020-02-25T18:51:51Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
Training deep neural networks on large-scale datasets requires significant hardware resources.
Backpropagation, the workhorse for training these networks, is an inherently sequential process that is difficult to parallelize.
We propose a neuro-biologically-plausible alternative to backprop that can be used to train deep networks.
arXiv Detail & Related papers (2020-02-10T16:20:02Z) - CounterExample Guided Neural Synthesis [12.742347465894586]
Program synthesis is difficult and methods that provide formal guarantees suffer from scalability issues.
We combine neural networks with formal reasoning to convert a logical specification into a sequence of examples that guides the neural network towards a correct solution.
Our results show that the formal reasoning based guidance improves the performance of the neural network substantially.
arXiv Detail & Related papers (2020-01-25T01:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.