Conformal Prediction for Federated Graph Neural Networks with Missing Neighbor Information
- URL: http://arxiv.org/abs/2410.14010v1
- Date: Thu, 17 Oct 2024 20:22:25 GMT
- Title: Conformal Prediction for Federated Graph Neural Networks with Missing Neighbor Information
- Authors: Ömer Faruk Akgül, Rajgopal Kannan, Viktor Prasanna,
- Abstract summary: This study extends the applicability of Conformal Prediction to federated graph learning.
We tackle the missing links issue in distributed subgraphs to minimize its adverse effects on CP set sizes.
We introduce a Variational Autoencoder-based approach for reconstructing missing neighbors to mitigate the negative impact of missing data.
- Score: 2.404163279345609
- License:
- Abstract: Graphs play a crucial role in data mining and machine learning, representing real-world objects and interactions. As graph datasets grow, managing large, decentralized subgraphs becomes essential, particularly within federated learning frameworks. These frameworks face significant challenges, including missing neighbor information, which can compromise model reliability in safety-critical settings. Deployment of federated learning models trained in such settings necessitates quantifying the uncertainty of the models. This study extends the applicability of Conformal Prediction (CP), a well-established method for uncertainty quantification, to federated graph learning. We specifically tackle the missing links issue in distributed subgraphs to minimize its adverse effects on CP set sizes. We discuss data dependencies across the distributed subgraphs and establish conditions for CP validity and precise test-time coverage. We introduce a Variational Autoencoder-based approach for reconstructing missing neighbors to mitigate the negative impact of missing data. Empirical evaluations on real-world datasets demonstrate the efficacy of our approach, yielding smaller prediction sets while ensuring coverage guarantees.
Related papers
- FedNE: Surrogate-Assisted Federated Neighbor Embedding for Dimensionality Reduction [47.336599393600046]
textscFedNE is a novel approach that integrates the textscFedAvg framework with the contrastive NE technique.
We conduct comprehensive experiments on both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-09-17T19:23:24Z) - MAPPING: Debiasing Graph Neural Networks for Fair Node Classification
with Limited Sensitive Information Leakage [1.8238848494579714]
We propose a novel model-agnostic debiasing framework named MAPPING for fair node classification.
Our results show that MAPPING can achieve better trade-offs between utility and fairness, and privacy risks of sensitive information leakage.
arXiv Detail & Related papers (2024-01-23T14:59:46Z) - Addressing the Impact of Localized Training Data in Graph Neural
Networks [0.0]
Graph Neural Networks (GNNs) have achieved notable success in learning from graph-structured data.
This article aims to assess the impact of training GNNs on localized subsets of the graph.
We propose a regularization method to minimize distributional discrepancies between localized training data and graph inference.
arXiv Detail & Related papers (2023-07-24T11:04:22Z) - Uncertainty-Aware Robust Learning on Noisy Graphs [16.66112191539017]
This paper proposes a novel uncertainty-aware graph learning framework motivated by distributionally robust optimization.
Specifically, we use a graph neural network-based encoder to embed the node features and find the optimal node embeddings.
Such an uncertainty-aware learning process leads to improved node representations and a more robust graph predictive model.
arXiv Detail & Related papers (2023-06-14T02:45:14Z) - Uncertainty Quantification over Graph with Conformalized Graph Neural
Networks [52.20904874696597]
Graph Neural Networks (GNNs) are powerful machine learning prediction models on graph-structured data.
GNNs lack rigorous uncertainty estimates, limiting their reliable deployment in settings where the cost of errors is significant.
We propose conformalized GNN (CF-GNN), extending conformal prediction (CP) to graph-based models for guaranteed uncertainty estimates.
arXiv Detail & Related papers (2023-05-23T21:38:23Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
We study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data.
We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance.
arXiv Detail & Related papers (2020-09-28T17:55:04Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - On the Role of Dataset Quality and Heterogeneity in Model Confidence [27.657631193015252]
Safety-critical applications require machine learning models that output accurate and calibrated probabilities.
Uncalibrated deep networks are known to make over-confident predictions.
We study the impact of dataset quality by studying the impact of dataset size and the label noise on the model confidence.
arXiv Detail & Related papers (2020-02-23T05:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.