論文の概要: From Barriers to Tactics: A Behavioral Science-Informed Agentic Workflow for Personalized Nutrition Coaching
- arxiv url: http://arxiv.org/abs/2410.14041v1
- Date: Thu, 17 Oct 2024 21:35:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:26:43.308703
- Title: From Barriers to Tactics: A Behavioral Science-Informed Agentic Workflow for Personalized Nutrition Coaching
- Title(参考訳): バリアから戦術へ:個人化された栄養指導のための行動科学インフォームドエージェントワークフロー
- Authors: Eric Yang, Tomas Garcia, Hannah Williams, Bhawesh Kumar, Martin Ramé, Eileen Rivera, Yiran Ma, Jonathan Amar, Caricia Catalani, Yugang Jia,
- Abstract要約: 本稿では,パーソナライズされた栄養指導を実現するために,LSMを利用した新しいエージェントワークフローを提案する。
特殊なLDMエージェントは、意図的に患者の食事障害の根本原因を調査し、特定する。
個別のLLMエージェントは、患者コンテキストでこれらの特定の障壁を克服するために設計された調整された戦術を提供する。
- 参考スコア(独自算出の注目度): 0.2808786262095875
- License:
- Abstract: Effective management of cardiometabolic conditions requires sustained positive nutrition habits, often hindered by complex and individualized barriers. Direct human management is simply not scalable, while previous attempts aimed at automating nutrition coaching lack the personalization needed to address these diverse challenges. This paper introduces a novel LLM-powered agentic workflow designed to provide personalized nutrition coaching by directly targeting and mitigating patient-specific barriers. Grounded in behavioral science principles, the workflow leverages a comprehensive mapping of nutrition-related barriers to corresponding evidence-based strategies. A specialized LLM agent intentionally probes for and identifies the root cause of a patient's dietary struggles. Subsequently, a separate LLM agent delivers tailored tactics designed to overcome those specific barriers with patient context. We designed and validated our approach through a user study with individuals with cardiometabolic conditions, demonstrating the system's ability to accurately identify barriers and provide personalized guidance. Furthermore, we conducted a large-scale simulation study, grounding on real patient vignettes and expert-validated metrics, to evaluate the system's performance across a wide range of scenarios. Our findings demonstrate the potential of this LLM-powered agentic workflow to improve nutrition coaching by providing personalized, scalable, and behaviorally-informed interventions.
- Abstract(参考訳): 心臓メタボリック状態の効果的な管理は、しばしば複雑で個別化された障壁によって妨げられる、持続的な肯定的な栄養習慣を必要とする。
直接的な人的管理は単にスケーラブルではないが、以前の栄養指導の自動化を目的とした試みでは、これらの多様な課題に対処するために必要なパーソナライゼーションが欠如していた。
本稿では,患者固有の障壁を直接的ターゲティングし緩和することにより,パーソナライズされた栄養指導を実現するための,LSMを利用した新しいエージェントワークフローを提案する。
行動科学の原則に基づいて、このワークフローは栄養関連障壁を、対応するエビデンスベースの戦略に包括的にマッピングする。
特殊なLDMエージェントは、意図的に患者の食事障害の根本原因を調査し、特定する。
その後、別個のLLMエージェントが患者コンテキストでこれらの特定の障壁を克服するために設計された調整された戦術を提供する。
我々は,心臓メタボリックな状態の個人を対象に,我々のアプローチを設計,検証し,障壁を正確に識別し,パーソナライズドガイダンスを提供するシステムの能力を実証した。
さらに,実際の患者ビゲットと専門家検証値に基づいて,大規模シミュレーションを行い,システムの性能を幅広いシナリオで評価した。
このLLMを利用したエージェントワークフローは, 個人化, 拡張性, 行動インフォームドによる介入を提供することで, 栄養指導を改善することができる可能性が示唆された。
関連論文リスト
- Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
大規模言語モデル(LLM)は、医療のさまざまな側面に革命をもたらすことのできる、変革的なAIツールのクラスである。
本チュートリアルは、LSMを臨床実践に効果的に統合するために必要なツールを医療専門家に提供することを目的としている。
論文 参考訳(メタデータ) (2024-10-24T15:41:56Z) - SouLLMate: An Application Enhancing Diverse Mental Health Support with Adaptive LLMs, Prompt Engineering, and RAG Techniques [9.146311285410631]
メンタルヘルスの問題は個人の日常生活に大きな影響を及ぼすが、多くの人は利用可能なオンラインリソースでも必要な支援を受けていない。
この研究は、最先端のAI技術を通じて、多様な、アクセス可能な、スティグマのない、パーソナライズされた、リアルタイムのメンタルヘルスサポートを提供することを目的としている。
論文 参考訳(メタデータ) (2024-10-17T22:04:32Z) - Toward Large Language Models as a Therapeutic Tool: Comparing Prompting Techniques to Improve GPT-Delivered Problem-Solving Therapy [6.952909762512736]
そこで本研究では,大規模言語モデル (LLM) を指導するためのプロンプトエンジニアリングの効果について検討する。
本稿では,プロンプトエンジニアリング手法を適切に利用することにより,プロトタイズされた治療を提供するモデルの能力を向上できることを実証する。
論文 参考訳(メタデータ) (2024-08-27T17:25:16Z) - Chain-of-Interaction: Enhancing Large Language Models for Psychiatric Behavior Understanding by Dyadic Contexts [4.403408362362806]
本稿では,対話型対話による精神科的意思決定支援のための大規模言語モデルを文脈化するための,対話型連鎖促進手法を提案する。
このアプローチにより、大規模言語モデルでは、患者の行動コーディングのためのコーディングスキーム、患者の状態、およびドメイン知識を活用することができる。
論文 参考訳(メタデータ) (2024-03-20T17:47:49Z) - Adaptive Multi-Agent Deep Reinforcement Learning for Timely Healthcare Interventions [17.405080523382235]
マルチエージェント深部強化学習(DRL)を用いた新しいAI駆動型患者監視フレームワークを提案する。
アプローチでは複数の学習エージェントをデプロイし,心拍数,呼吸量,温度などの生理的特徴をモニタする。
提案する多エージェントDRLフレームワークの性能を,2つのデータセットから実世界の生理・運動データを用いて評価した。
論文 参考訳(メタデータ) (2023-09-20T00:42:08Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - On Pathologies in KL-Regularized Reinforcement Learning from Expert
Demonstrations [79.49929463310588]
我々は,KL-正規化強化学習と行動基準ポリシを併用することで,病理訓練のダイナミクスに悩まされることを示した。
非パラメトリックな行動参照ポリシーで治療できることを示す。
論文 参考訳(メタデータ) (2022-12-28T16:29:09Z) - Automated Fidelity Assessment for Strategy Training in Inpatient
Rehabilitation using Natural Language Processing [53.096237570992294]
戦略トレーニング (Strategy Training) とは、脳卒中後の認知障害患者に障害を減らすためのスキルを教える、リハビリテーションのアプローチである。
標準化された忠実度評価は治療原則の遵守度を測定するために用いられる。
本研究では,ルールベースNLPアルゴリズム,長短項メモリ(LSTM)モデル,および変換器(BERT)モデルからの双方向エンコーダ表現を開発した。
論文 参考訳(メタデータ) (2022-09-14T15:33:30Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
薬物標的親和性(DTA)は、早期の薬物発見において極めて重要である。
湿式実験は依然として最も信頼性の高い方法であるが、時間と資源が集中している。
既存の手法は主に、データ不足の問題に適切に対処することなく、利用可能なDTAデータに基づく技術開発に重点を置いている。
SSM-DTAフレームワークについて述べる。
論文 参考訳(メタデータ) (2022-06-20T14:53:25Z) - Personalized Rehabilitation Robotics based on Online Learning Control [62.6606062732021]
本稿では,各ユーザに対して実行時の制御力をパーソナライズ可能な,新しいオンライン学習制御アーキテクチャを提案する。
提案手法を,学習コントローラがパーソナライズされた制御を提供するとともに,安全な相互作用力も得られる実験ユーザスタディで評価した。
論文 参考訳(メタデータ) (2021-10-01T15:28:44Z) - Unifying Cardiovascular Modelling with Deep Reinforcement Learning for
Uncertainty Aware Control of Sepsis Treatment [0.2399911126932526]
血管抑制剤および流動管理のための作戦で普遍的に合意がありません。
セプシスはICUの主要な死亡原因であり、すべての入院の6%と米国の病院内死亡の35%を担当しています。
本稿では,数学モデリング,深層学習,強化学習,不確実性定量化の補完的強みを活用し,統一する新しい手法を提案する。
論文 参考訳(メタデータ) (2021-01-21T07:32:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。