Inverse Reinforcement Learning from Non-Stationary Learning Agents
- URL: http://arxiv.org/abs/2410.14135v1
- Date: Fri, 18 Oct 2024 03:02:44 GMT
- Title: Inverse Reinforcement Learning from Non-Stationary Learning Agents
- Authors: Kavinayan P. Sivakumar, Yi Shen, Zachary Bell, Scott Nivison, Boyuan Chen, Michael M. Zavlanos,
- Abstract summary: We study an inverse reinforcement learning problem that involves learning the reward function of a learning agent using trajectory data collected while this agent is learning its optimal policy.
We propose an inverse reinforcement learning method that allows us to estimate the policy parameters of the learning agent which can then be used to estimate its reward function.
- Score: 11.203097744443898
- License:
- Abstract: In this paper, we study an inverse reinforcement learning problem that involves learning the reward function of a learning agent using trajectory data collected while this agent is learning its optimal policy. To address this problem, we propose an inverse reinforcement learning method that allows us to estimate the policy parameters of the learning agent which can then be used to estimate its reward function. Our method relies on a new variant of the behavior cloning algorithm, which we call bundle behavior cloning, and uses a small number of trajectories generated by the learning agent's policy at different points in time to learn a set of policies that match the distribution of actions observed in the sampled trajectories. We then use the cloned policies to train a neural network model that estimates the reward function of the learning agent. We provide a theoretical analysis to show a complexity result on bound guarantees for our method that beats standard behavior cloning as well as numerical experiments for a reinforcement learning problem that validate the proposed method.
Related papers
- Learning Causally Invariant Reward Functions from Diverse Demonstrations [6.351909403078771]
Inverse reinforcement learning methods aim to retrieve the reward function of a Markov decision process based on a dataset of expert demonstrations.
This adaptation often exhibits overfitting to the expert data set when a policy is trained on the obtained reward function under distribution shift of the environment dynamics.
In this work, we explore a novel regularization approach for inverse reinforcement learning methods based on the causal invariance principle with the goal of improved reward function generalization.
arXiv Detail & Related papers (2024-09-12T12:56:24Z) - Multi-Agent Transfer Learning via Temporal Contrastive Learning [8.487274986507922]
This paper introduces a novel transfer learning framework for deep multi-agent reinforcement learning.
The approach automatically combines goal-conditioned policies with temporal contrastive learning to discover meaningful sub-goals.
arXiv Detail & Related papers (2024-06-03T14:42:14Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Statistically Efficient Variance Reduction with Double Policy Estimation
for Off-Policy Evaluation in Sequence-Modeled Reinforcement Learning [53.97273491846883]
We propose DPE: an RL algorithm that blends offline sequence modeling and offline reinforcement learning with Double Policy Estimation.
We validate our method in multiple tasks of OpenAI Gym with D4RL benchmarks.
arXiv Detail & Related papers (2023-08-28T20:46:07Z) - Nonparametric Linear Feature Learning in Regression Through Regularisation [0.0]
We propose a novel method for joint linear feature learning and non-parametric function estimation.
By using alternative minimisation, we iteratively rotate the data to improve alignment with leading directions.
We establish that the expected risk of our method converges to the minimal risk under minimal assumptions and with explicit rates.
arXiv Detail & Related papers (2023-07-24T12:52:55Z) - Variance-Aware Off-Policy Evaluation with Linear Function Approximation [85.75516599931632]
We study the off-policy evaluation problem in reinforcement learning with linear function approximation.
We propose an algorithm, VA-OPE, which uses the estimated variance of the value function to reweight the Bellman residual in Fitted Q-Iteration.
arXiv Detail & Related papers (2021-06-22T17:58:46Z) - Scalable Reinforcement Learning Policies for Multi-Agent Control [29.42370205354368]
We develop a Multi-Agent Reinforcement Learning (MARL) method to learn scalable control policies for target tracking.
We show results for tasks consisting of up to 1000 pursuers tracking 1000 targets.
arXiv Detail & Related papers (2020-11-16T16:11:12Z) - Inverse Reinforcement Learning from a Gradient-based Learner [41.8663538249537]
Inverse Reinforcement Learning addresses the problem of inferring an expert's reward function from demonstrations.
In this paper, we propose a new algorithm for this setting, in which the goal is to recover the reward function being optimized by an agent.
arXiv Detail & Related papers (2020-07-15T16:41:00Z) - Meta-learning with Stochastic Linear Bandits [120.43000970418939]
We consider a class of bandit algorithms that implement a regularized version of the well-known OFUL algorithm, where the regularization is a square euclidean distance to a bias vector.
We show both theoretically and experimentally, that when the number of tasks grows and the variance of the task-distribution is small, our strategies have a significant advantage over learning the tasks in isolation.
arXiv Detail & Related papers (2020-05-18T08:41:39Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
Reinforcement learning (RL) in discrete action space is ubiquitous in real-world applications, but its complexity grows exponentially with the action-space dimension.
We construct a critic to estimate action-value functions, apply it on correlated actions, and combine these critic estimated action values to control the variance of gradient estimation.
These efforts result in a new discrete action on-policy RL algorithm that empirically outperforms related on-policy algorithms relying on variance control techniques.
arXiv Detail & Related papers (2020-02-10T04:23:09Z) - Reward-Conditioned Policies [100.64167842905069]
imitation learning requires near-optimal expert data.
Can we learn effective policies via supervised learning without demonstrations?
We show how such an approach can be derived as a principled method for policy search.
arXiv Detail & Related papers (2019-12-31T18:07:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.