Hierarchical Conditional Multi-Task Learning for Streamflow Modeling
- URL: http://arxiv.org/abs/2410.14137v1
- Date: Fri, 18 Oct 2024 03:14:57 GMT
- Title: Hierarchical Conditional Multi-Task Learning for Streamflow Modeling
- Authors: Shaoming Xu, Arvind Renganathan, Ankush Khandelwal, Rahul Ghosh, Xiang Li, Licheng Liu, Kshitij Tayal, Peter Harrington, Xiaowei Jia, Zhenong Jin, Jonh Nieber, Vipin Kumar,
- Abstract summary: Hierarchical Conditional Multi-Task Learning (HCMTL) is a hierarchical approach that jointly models soil water and snowpack processes based on causal connections to streamflow.
HCMTL's superior performance across hundreds of drainage basins over extended periods shows that integrating domain-specific causal knowledge into deep learning enhances both prediction accuracy and interpretability.
- Score: 24.040194424037065
- License:
- Abstract: Streamflow, vital for water resource management, is governed by complex hydrological systems involving intermediate processes driven by meteorological forces. While deep learning models have achieved state-of-the-art results of streamflow prediction, their end-to-end single-task learning approach often fails to capture the causal relationships within these systems. To address this, we propose Hierarchical Conditional Multi-Task Learning (HCMTL), a hierarchical approach that jointly models soil water and snowpack processes based on their causal connections to streamflow. HCMTL utilizes task embeddings to connect network modules, enhancing flexibility and expressiveness while capturing unobserved processes beyond soil water and snowpack. It also incorporates the Conditional Mini-Batch strategy to improve long time series modeling. We compare HCMTL with five baselines on a global dataset. HCMTL's superior performance across hundreds of drainage basins over extended periods shows that integrating domain-specific causal knowledge into deep learning enhances both prediction accuracy and interpretability. This is essential for advancing our understanding of complex hydrological systems and supporting efficient water resource management to mitigate natural disasters like droughts and floods.
Related papers
- Online Multi-modal Root Cause Analysis [61.94987309148539]
Root Cause Analysis (RCA) is essential for pinpointing the root causes of failures in microservice systems.
Existing online RCA methods handle only single-modal data overlooking, complex interactions in multi-modal systems.
We introduce OCEAN, a novel online multi-modal causal structure learning method for root cause localization.
arXiv Detail & Related papers (2024-10-13T21:47:36Z) - Hierarchically Disentangled Recurrent Network for Factorizing System Dynamics of Multi-scale Systems [4.634606500665259]
We present a knowledge-guided machine learning (KGML) framework for modeling multi-scale processes.
We study its performance in the context of streamflow forecasting in hydrology.
arXiv Detail & Related papers (2024-07-29T16:25:43Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
We propose Mulan, a unified multi-modal causal structure learning method for root cause localization.
We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data.
We also introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph.
arXiv Detail & Related papers (2024-02-04T05:50:38Z) - Towards Interpretable Physical-Conceptual Catchment-Scale Hydrological Modeling using the Mass-Conserving-Perceptron [1.1510009152620668]
This study sets the stage for interpretable regional-scale MCP-based hydrological modeling (using large sample data) by using neural architecture search to determine appropriate minimal representations for catchments in different hydroclimatic regimes.
arXiv Detail & Related papers (2024-01-25T21:26:49Z) - Learning from Polar Representation: An Extreme-Adaptive Model for
Long-Term Time Series Forecasting [10.892801642895904]
We propose Distance-weighted Auto-regularized Neural network (DAN), a novel extreme-adaptive model for long-range forecasting of stremflow enhanced by polar representation learning.
On four real-life hydrologic streamflow datasets, we demonstrate that DAN significantly outperforms both state-of-the-art hydrologic time series prediction methods and general methods designed for long-term time series prediction.
arXiv Detail & Related papers (2023-12-14T09:16:01Z) - Optimal scheduling of island integrated energy systems considering
multi-uncertainties and hydrothermal simultaneous transmission: A deep
reinforcement learning approach [3.900623554490941]
Multi-uncertainties from power sources and loads have brought challenges to the stable demand supply of various resources at islands.
To address these challenges, a comprehensive scheduling framework is proposed based on modeling an island integrated energy system (IES)
In response to the shortage of freshwater on islands, in addition to the introduction of seawater desalination systems, a transmission structure of "hydrothermal simultaneous transmission" (HST) is proposed.
arXiv Detail & Related papers (2022-12-27T12:46:25Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Physics Guided Machine Learning Methods for Hydrology [21.410993515618895]
We propose an LSTM based deep learning architecture that is coupled with SWAT (Soil and Water Assessment Tool)
The efficacy of the approach is being analyzed on several small catchments located in the South Branch of the Root River Watershed in southeast Minnesota.
arXiv Detail & Related papers (2020-12-02T19:17:19Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z) - Normalizing Flows with Multi-Scale Autoregressive Priors [131.895570212956]
We introduce channel-wise dependencies in their latent space through multi-scale autoregressive priors (mAR)
Our mAR prior for models with split coupling flow layers (mAR-SCF) can better capture dependencies in complex multimodal data.
We show that mAR-SCF allows for improved image generation quality, with gains in FID and Inception scores compared to state-of-the-art flow-based models.
arXiv Detail & Related papers (2020-04-08T09:07:11Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
We propose a novel numerical scheme to optimize the gradient flows for learning energy-based models (EBMs)
We derive a second-order Wasserstein gradient flow of the global relative entropy from Fokker-Planck equation.
Compared with existing schemes, Wasserstein gradient flow is a smoother and near-optimal numerical scheme to approximate real data densities.
arXiv Detail & Related papers (2019-10-31T02:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.