Towards Interpretable Physical-Conceptual Catchment-Scale Hydrological Modeling using the Mass-Conserving-Perceptron
- URL: http://arxiv.org/abs/2401.14521v4
- Date: Sun, 28 Jul 2024 22:59:57 GMT
- Title: Towards Interpretable Physical-Conceptual Catchment-Scale Hydrological Modeling using the Mass-Conserving-Perceptron
- Authors: Yuan-Heng Wang, Hoshin V. Gupta,
- Abstract summary: This study sets the stage for interpretable regional-scale MCP-based hydrological modeling (using large sample data) by using neural architecture search to determine appropriate minimal representations for catchments in different hydroclimatic regimes.
- Score: 1.1510009152620668
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the applicability of machine learning technologies to the development of parsimonious, interpretable, catchment-scale hydrologic models using directed-graph architectures based on the mass-conserving perceptron (MCP) as the fundamental computational unit. Here, we focus on architectural complexity (depth) at a single location, rather than universal applicability (breadth) across large samples of catchments. The goal is to discover a minimal representation (numbers of cell-states and flow paths) that represents the dominant processes that can explain the input-state-output behaviors of a given catchment, with particular emphasis given to simulating the full range (high, medium, and low) of flow dynamics. We find that a HyMod Like architecture with three cell-states and two major flow pathways achieves such a representation at our study location, but that the additional incorporation of an input-bypass mechanism significantly improves the timing and shape of the hydrograph, while the inclusion of bi-directional groundwater mass exchanges significantly enhances the simulation of baseflow. Overall, our results demonstrate the importance of using multiple diagnostic metrics for model evaluation, while highlighting the need for properly selecting and designing the training metrics based on information-theoretic foundations that are better suited to extracting information across the full range of flow dynamics. This study sets the stage for interpretable regional-scale MCP-based hydrological modeling (using large sample data) by using neural architecture search to determine appropriate minimal representations for catchments in different hydroclimatic regimes.
Related papers
- SMPLest-X: Ultimate Scaling for Expressive Human Pose and Shape Estimation [81.36747103102459]
Expressive human pose and shape estimation (EHPS) unifies body, hands, and face motion capture with numerous applications.
Current state-of-the-art methods focus on training innovative architectural designs on confined datasets.
We investigate the impact of scaling up EHPS towards a family of generalist foundation models.
arXiv Detail & Related papers (2025-01-16T18:59:46Z) - AI-Driven Reinvention of Hydrological Modeling for Accurate Predictions and Interpretation to Transform Earth System Modeling [19.028024402759467]
HydroTrace is an algorithm-driven, data-agnostic model for predicting streamflow.
It achieves a Nash-Sutcliffe Efficiency of 98% and demonstrates strong generalization on unseen data.
arXiv Detail & Related papers (2025-01-07T18:59:53Z) - Geometry Matters: Benchmarking Scientific ML Approaches for Flow Prediction around Complex Geometries [23.111935712144277]
Rapid yet accurate simulations of fluid dynamics around complex geometries is critical in a variety of engineering and scientific applications.
While scientific machine learning (SciML) has shown promise, most studies are constrained to simple geometries.
This study addresses this gap by benchmarking diverse SciML models for fluid flow prediction over intricate geometries.
arXiv Detail & Related papers (2024-12-31T00:23:15Z) - Data-Efficient Inference of Neural Fluid Fields via SciML Foundation Model [49.06911227670408]
We show that SciML foundation model can significantly improve the data efficiency of inferring real-world 3D fluid dynamics with improved generalization.
We equip neural fluid fields with a novel collaborative training approach that utilizes augmented views and fluid features extracted by our foundation model.
arXiv Detail & Related papers (2024-12-18T14:39:43Z) - Using Machine Learning to Discover Parsimonious and Physically-Interpretable Representations of Catchment-Scale Rainfall-Runoff Dynamics [1.1510009152620668]
An underexplored aspect of machine learning is how to develop minimally-optimal representations.
Our own view is that ML-based modeling should be based in use of computational units that are fundamentally interpretable by design.
We show, in the context of lumped catchment modeling, that physical interpretability and predictive performance can both be achieved using a relatively parsimonious distributed-state network.
arXiv Detail & Related papers (2024-12-06T08:30:01Z) - Hierarchically Disentangled Recurrent Network for Factorizing System Dynamics of Multi-scale Systems [4.634606500665259]
We present a knowledge-guided machine learning (KGML) framework for modeling multi-scale processes.
We study its performance in the context of streamflow forecasting in hydrology.
arXiv Detail & Related papers (2024-07-29T16:25:43Z) - Optimization of a Hydrodynamic Computational Reservoir through Evolution [58.720142291102135]
We interface with a model of a hydrodynamic system, under development by a startup, as a computational reservoir.
We optimized the readout times and how inputs are mapped to the wave amplitude or frequency using an evolutionary search algorithm.
Applying evolutionary methods to this reservoir system substantially improved separability on an XNOR task, in comparison to implementations with hand-selected parameters.
arXiv Detail & Related papers (2023-04-20T19:15:02Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
We present a combination of accurate numerical simulations of arbitrary, flat, and non-flat channels and machine learning models predicting drag coefficient and Stanton number.
We show that convolutional neural networks (CNN) can accurately predict the target properties at a fraction of the time of numerical simulations.
arXiv Detail & Related papers (2021-01-19T16:14:02Z) - Physics Guided Machine Learning Methods for Hydrology [21.410993515618895]
We propose an LSTM based deep learning architecture that is coupled with SWAT (Soil and Water Assessment Tool)
The efficacy of the approach is being analyzed on several small catchments located in the South Branch of the Root River Watershed in southeast Minnesota.
arXiv Detail & Related papers (2020-12-02T19:17:19Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.