論文の概要: Fine-Grained Verifiers: Preference Modeling as Next-token Prediction in Vision-Language Alignment
- arxiv url: http://arxiv.org/abs/2410.14148v3
- Date: Tue, 19 Nov 2024 03:08:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:34:37.199458
- Title: Fine-Grained Verifiers: Preference Modeling as Next-token Prediction in Vision-Language Alignment
- Title(参考訳): 細粒度検証器:視覚言語アライメントにおける次トーケン予測としての評価モデル
- Authors: Chenhang Cui, An Zhang, Yiyang Zhou, Zhaorun Chen, Gelei Deng, Huaxiu Yao, Tat-Seng Chua,
- Abstract要約: 本研究では,視覚言語アライメントを改善するための細粒度検証器として,モデル自身のビジュアルエンコーダを利用する新たな自己アライメント手法であるFiSAOを提案する。
ビジョンエンコーダからのトークンレベルのフィードバックを活用することで、FiSAOは視覚言語アライメントを大幅に改善する。
- 参考スコア(独自算出の注目度): 57.0121616203175
- License:
- Abstract: The recent advancements in large language models (LLMs) and pre-trained vision models have accelerated the development of vision-language large models (VLLMs), enhancing the interaction between visual and linguistic modalities. Despite their notable success across various domains, VLLMs face challenges in modality alignment, which can lead to issues like hallucinations and unsafe content generation. Current alignment techniques often rely on coarse feedback and external datasets, limiting scalability and performance. In this paper, we propose FiSAO (Fine-Grained Self-Alignment Optimization), a novel self-alignment method that utilizes the model's own visual encoder as a fine-grained verifier to improve vision-language alignment without the need for additional data. By leveraging token-level feedback from the vision encoder, FiSAO significantly improves vision-language alignment, even surpassing traditional preference tuning methods that require additional data. Through both theoretical analysis and experimental validation, we demonstrate that FiSAO effectively addresses the misalignment problem in VLLMs, marking the first instance of token-level rewards being applied to such models.
- Abstract(参考訳): 近年の大規模言語モデル(LLM)と事前学習型視覚モデル(VLLM)の進歩は、視覚言語大モデル(VLLM)の開発を加速させ、視覚的モダリティと言語的モダリティの相互作用を高めている。
様々な領域で顕著な成功を収めたにもかかわらず、VLLMはモダリティアライメントの課題に直面しており、幻覚やアンセーフなコンテンツ生成といった問題に繋がる可能性がある。
現在のアライメント技術は、しばしば粗いフィードバックと外部データセットに依存し、スケーラビリティとパフォーマンスを制限します。
本稿では、モデル自身の視覚エンコーダを細粒度検証器として利用し、追加データを必要としない視覚言語アライメントを改善する、新たな自己アライメント手法であるFiSAOを提案する。
ビジョンエンコーダからのトークンレベルのフィードバックを活用することで、FiSAOは視覚言語アライメントを大幅に改善する。
理論的解析と実験的検証の両面から、FSAOはVLLMの不正調整問題に効果的に対処し、トークンレベルの報酬がそのようなモデルに適用された最初の事例を示す。
関連論文リスト
- Enhancing Visual-Language Modality Alignment in Large Vision Language Models via Self-Improvement [102.22911097049953]
SIMAは、自己改善を通じて視覚的および言語的モダリティアライメントを強化するフレームワークである。
コンテキスト内自己批判機構を使用して、プライオリティチューニングのためのレスポンスペアを選択する。
SIMAは従来の手法よりも優れたモダリティアライメントを実現することを実証する。
論文 参考訳(メタデータ) (2024-05-24T23:09:27Z) - Calibrated Self-Rewarding Vision Language Models [27.686545023186852]
LVLM(Large Vision-Language Models)は、訓練済みの大規模言語モデル(LLM)と視覚モデルを統合することで、指導チューニングを通じて大幅に進歩した。
LVLMは、しばしば幻覚現象を示し、生成されたテキスト応答は言語的に妥当に見えるが、入力画像に矛盾する。
本稿では,候補応答を反復的に生成し,各応答に対する報酬を評価し,微調整のための選好データをキュレートすることで,モデルの自己改善を可能にするCalibrated Self-Rewarding(CSR)アプローチを提案する。
論文 参考訳(メタデータ) (2024-05-23T14:30:33Z) - Multimodal Large Language Model is a Human-Aligned Annotator for Text-to-Image Generation [87.50120181861362]
VisionPreferは高品質できめ細かい選好データセットで、複数の選好面をキャプチャする。
我々は、VisionPrefer上で報酬モデルVP-Scoreをトレーニングし、テキストから画像への生成モデルのトレーニングを指導し、VP-Scoreの嗜好予測精度は人間のアノテーションに匹敵する。
論文 参考訳(メタデータ) (2024-04-23T14:53:15Z) - Collaborative decoding of critical tokens for boosting factuality of
large language models [57.504894664689]
微調整および整列モデルでは、命令追従と安全な生成の能力が改善されている。
世代ごとのサンプリングの一般的な実践は、幻覚の確率を増大させる。
我々は、クリティカルトークンの概念を通じて、事前訓練されたモデル内の高い事実性を活用するための協調的復号化フレームワークを導入する。
論文 参考訳(メタデータ) (2024-02-28T01:53:37Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
限られたデータセットに基づいて,効率的な自己回帰に基づく視覚モデルを構築する。
このモデルは,高レベル・低レベルのセマンティック理解の両方にまたがる視覚的タスクにおいて,その習熟度をいかに達成するかを実証する。
我々の経験的評価は、モデルが様々なタスクに適応する際の機敏さを強調し、パラメータフットプリントの大幅な削減を図った。
論文 参考訳(メタデータ) (2024-02-07T13:41:53Z) - Expedited Training of Visual Conditioned Language Generation via
Redundancy Reduction [61.16125290912494]
$textEVL_textGen$は、視覚条件付き言語生成モデルの事前トレーニング用に設計されたフレームワークである。
提案手法は,視覚言語モデルの学習を5倍に加速させるが,全体的な性能に顕著な影響を与えないことを示す。
論文 参考訳(メタデータ) (2023-10-05T03:40:06Z) - ViLTA: Enhancing Vision-Language Pre-training through Textual
Augmentation [35.05755930636518]
画像とテキストのペア間の微細な表現をより容易に学習するための2つのコンポーネントからなるViLTAを提案する。
Masked Language Modeling (MLM) では,モデルの堅牢性を高めるために,ソフトラベルを生成するクロス蒸留法を提案する。
画像テキストマッチング(ITM)では、現在の言語エンコーダを利用して、言語入力のコンテキストに基づいてハードネガティブを合成する。
論文 参考訳(メタデータ) (2023-08-31T12:46:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。