LabSafety Bench: Benchmarking LLMs on Safety Issues in Scientific Labs
- URL: http://arxiv.org/abs/2410.14182v2
- Date: Wed, 26 Feb 2025 09:17:27 GMT
- Title: LabSafety Bench: Benchmarking LLMs on Safety Issues in Scientific Labs
- Authors: Yujun Zhou, Jingdong Yang, Yue Huang, Kehan Guo, Zoe Emory, Bikram Ghosh, Amita Bedar, Sujay Shekar, Pin-Yu Chen, Tian Gao, Werner Geyer, Nuno Moniz, Nitesh V Chawla, Xiangliang Zhang,
- Abstract summary: Artificial Intelligence (AI) is revolutionizing scientific research, yet its growing integration into laboratory environments presents critical safety challenges.<n>Large language models (LLMs) increasingly assist in tasks ranging from procedural guidance to autonomous experiment orchestration.<n>Such overreliance is especially hazardous in high-stakes laboratory settings, where failures in hazard identification or risk assessment can result in severe accidents.<n>We propose the Laboratory Safety Benchmark (LabSafety Bench), a comprehensive framework that evaluates LLMs and vision language models (VLMs) on their ability to identify potential hazards, assess risks, and predict the consequences of unsafe actions in lab environments.
- Score: 75.85283891591678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Intelligence (AI) is revolutionizing scientific research, yet its growing integration into laboratory environments presents critical safety challenges. While large language models (LLMs) increasingly assist in tasks ranging from procedural guidance to autonomous experiment orchestration, an "illusion of understanding" may lead researchers to overestimate their reliability. Such overreliance is especially hazardous in high-stakes laboratory settings, where failures in hazard identification or risk assessment can result in severe accidents. To address these concerns, we propose the Laboratory Safety Benchmark (LabSafety Bench), a comprehensive framework that evaluates LLMs and vision language models (VLMs) on their ability to identify potential hazards, assess risks, and predict the consequences of unsafe actions in lab environments. LabSafety Bench comprises 765 multiple-choice questions aligned with US Occupational Safety and Health Administration (OSHA) protocols, along with 520 realistic laboratory scenarios featuring dual evaluation tasks: the Hazards Identification Test and the Consequence Identification Test, with 4090 open-ended questions in total. Evaluations across eight proprietary models, seven open-weight LLMs, and four VLMs reveal that, despite advanced performance on structured assessments, no model achieves the safety threshold required for reliable operation. None scored above 75% on the Hazards Identification Test. Moreover, while proprietary models tend to excel in multiple-choice evaluations, their performance in open-ended, real-world scenario responses is comparable to that of open-source models. These findings underscore the urgent need for specialized evaluation frameworks to ensure the safe and responsible deployment of AI in laboratory settings.
Related papers
- A Framework for Benchmarking and Aligning Task-Planning Safety in LLM-Based Embodied Agents [13.225168384790257]
Large Language Models (LLMs) exhibit substantial promise in enhancing task-planning capabilities within embodied agents.
We present Safe-BeAl, an integrated framework for the measurement (SafePlan-Bench) and alignment (Safe-Align) of LLM-based embodied agents' behaviors.
Our empirical analysis reveals that even in the absence of adversarial inputs or malicious intent, LLM-based agents can exhibit unsafe behaviors.
arXiv Detail & Related papers (2025-04-20T15:12:14Z) - Agent-SafetyBench: Evaluating the Safety of LLM Agents [72.92604341646691]
We introduce Agent-SafetyBench, a comprehensive benchmark to evaluate the safety of large language models (LLMs)
Agent-SafetyBench encompasses 349 interaction environments and 2,000 test cases, evaluating 8 categories of safety risks and covering 10 common failure modes frequently encountered in unsafe interactions.
Our evaluation of 16 popular LLM agents reveals a concerning result: none of the agents achieves a safety score above 60%.
arXiv Detail & Related papers (2024-12-19T02:35:15Z) - Responsible AI in Construction Safety: Systematic Evaluation of Large Language Models and Prompt Engineering [9.559203170987598]
Construction remains one of the most hazardous sectors.
Recent advancements in AI, particularly Large Language Models (LLMs), offer promising opportunities for enhancing workplace safety.
This study evaluates the performance of two widely used LLMs, GPT-3.5 and GPT-4o, across three standardized exams administered by the Board of Certified Safety Professionals (BCSP)
arXiv Detail & Related papers (2024-11-13T04:06:09Z) - CFSafety: Comprehensive Fine-grained Safety Assessment for LLMs [4.441767341563709]
We introduce a safety assessment benchmark, CFSafety, which integrates 5 classic safety scenarios and 5 types of instruction attacks, totaling 10 categories of safety questions.
This test set was used to evaluate the natural language generation capabilities of large language models (LLMs)
The results indicate that while GPT-4 demonstrated superior safety performance, the safety effectiveness of LLMs, including this model, still requires improvement.
arXiv Detail & Related papers (2024-10-29T03:25:20Z) - SciSafeEval: A Comprehensive Benchmark for Safety Alignment of Large Language Models in Scientific Tasks [36.99233361224705]
Large language models (LLMs) have had a transformative impact on a variety of scientific tasks across disciplines such as biology, chemistry, medicine, and physics.
Existing benchmarks primarily focus on textual content and overlooking key scientific representations such as molecular, protein, and genomic languages.
We introduce SciSafeEval, a benchmark designed to evaluate the safety alignment of LLMs across a range of scientific tasks.
arXiv Detail & Related papers (2024-10-02T16:34:48Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.
Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.
However, the deployment of these agents in physical environments presents significant safety challenges.
This study introduces EARBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - Safety-Driven Deep Reinforcement Learning Framework for Cobots: A Sim2Real Approach [1.0488553716155147]
This study presents a novel methodology incorporating safety constraints into a robotic simulation during the training of deep reinforcement learning (DRL)
The framework integrates specific parts of the safety requirements, such as velocity constraints, directly within the DRL model.
The proposed approach outperforms the conventional method by a 16.5% average success rate on the tested scenarios.
arXiv Detail & Related papers (2024-07-02T12:56:17Z) - ALERT: A Comprehensive Benchmark for Assessing Large Language Models' Safety through Red Teaming [64.86326523181553]
ALERT is a large-scale benchmark to assess safety based on a novel fine-grained risk taxonomy.
It aims to identify vulnerabilities, inform improvements, and enhance the overall safety of the language models.
arXiv Detail & Related papers (2024-04-06T15:01:47Z) - Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science [65.77763092833348]
Intelligent agents powered by large language models (LLMs) have demonstrated substantial promise in autonomously conducting experiments and facilitating scientific discoveries across various disciplines.
While their capabilities are promising, these agents also introduce novel vulnerabilities that demand careful consideration for safety.
This paper conducts a thorough examination of vulnerabilities in LLM-based agents within scientific domains, shedding light on potential risks associated with their misuse and emphasizing the need for safety measures.
arXiv Detail & Related papers (2024-02-06T18:54:07Z) - The Art of Defending: A Systematic Evaluation and Analysis of LLM
Defense Strategies on Safety and Over-Defensiveness [56.174255970895466]
Large Language Models (LLMs) play an increasingly pivotal role in natural language processing applications.
This paper presents Safety and Over-Defensiveness Evaluation (SODE) benchmark.
arXiv Detail & Related papers (2023-12-30T17:37:06Z) - Identifying the Risks of LM Agents with an LM-Emulated Sandbox [68.26587052548287]
Language Model (LM) agents and tools enable a rich set of capabilities but also amplify potential risks.
High cost of testing these agents will make it increasingly difficult to find high-stakes, long-tailed risks.
We introduce ToolEmu: a framework that uses an LM to emulate tool execution and enables the testing of LM agents against a diverse range of tools and scenarios.
arXiv Detail & Related papers (2023-09-25T17:08:02Z) - SafetyBench: Evaluating the Safety of Large Language Models [54.878612385780805]
SafetyBench is a comprehensive benchmark for evaluating the safety of Large Language Models (LLMs)
It comprises 11,435 diverse multiple choice questions spanning across 7 distinct categories of safety concerns.
Our tests over 25 popular Chinese and English LLMs in both zero-shot and few-shot settings reveal a substantial performance advantage for GPT-4 over its counterparts.
arXiv Detail & Related papers (2023-09-13T15:56:50Z) - Safety Assessment of Chinese Large Language Models [51.83369778259149]
Large language models (LLMs) may generate insulting and discriminatory content, reflect incorrect social values, and may be used for malicious purposes.
To promote the deployment of safe, responsible, and ethical AI, we release SafetyPrompts including 100k augmented prompts and responses by LLMs.
arXiv Detail & Related papers (2023-04-20T16:27:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.