Responsible AI in Construction Safety: Systematic Evaluation of Large Language Models and Prompt Engineering
- URL: http://arxiv.org/abs/2411.08320v1
- Date: Wed, 13 Nov 2024 04:06:09 GMT
- Title: Responsible AI in Construction Safety: Systematic Evaluation of Large Language Models and Prompt Engineering
- Authors: Farouq Sammour, Jia Xu, Xi Wang, Mo Hu, Zhenyu Zhang,
- Abstract summary: Construction remains one of the most hazardous sectors.
Recent advancements in AI, particularly Large Language Models (LLMs), offer promising opportunities for enhancing workplace safety.
This study evaluates the performance of two widely used LLMs, GPT-3.5 and GPT-4o, across three standardized exams administered by the Board of Certified Safety Professionals (BCSP)
- Score: 9.559203170987598
- License:
- Abstract: Construction remains one of the most hazardous sectors. Recent advancements in AI, particularly Large Language Models (LLMs), offer promising opportunities for enhancing workplace safety. However, responsible integration of LLMs requires systematic evaluation, as deploying them without understanding their capabilities and limitations risks generating inaccurate information, fostering misplaced confidence, and compromising worker safety. This study evaluates the performance of two widely used LLMs, GPT-3.5 and GPT-4o, across three standardized exams administered by the Board of Certified Safety Professionals (BCSP). Using 385 questions spanning seven safety knowledge areas, the study analyzes the models' accuracy, consistency, and reliability. Results show that both models consistently exceed the BCSP benchmark, with GPT-4o achieving an accuracy rate of 84.6% and GPT-3.5 reaching 73.8%. Both models demonstrate strengths in safety management systems and hazard identification and control, but exhibit weaknesses in science, mathematics, emergency response, and fire prevention. An error analysis identifies four primary limitations affecting LLM performance: lack of knowledge, reasoning flaws, memory issues, and calculation errors. Our study also highlights the impact of prompt engineering strategies, with variations in accuracy reaching 13.5% for GPT-3.5 and 7.9% for GPT-4o. However, no single prompt configuration proves universally effective. This research advances knowledge in three ways: by identifying areas where LLMs can support safety practices and where human oversight remains essential, by offering practical insights into improving LLM implementation through prompt engineering, and by providing evidence-based direction for future research and development. These contributions support the responsible integration of AI in construction safety management toward achieving zero injuries.
Related papers
- Defining and Evaluating Physical Safety for Large Language Models [62.4971588282174]
Large Language Models (LLMs) are increasingly used to control robotic systems such as drones.
Their risks of causing physical threats and harm in real-world applications remain unexplored.
We classify the physical safety risks of drones into four categories: (1) human-targeted threats, (2) object-targeted threats, (3) infrastructure attacks, and (4) regulatory violations.
arXiv Detail & Related papers (2024-11-04T17:41:25Z) - LabSafety Bench: Benchmarking LLMs on Safety Issues in Scientific Labs [80.45174785447136]
Laboratory accidents pose significant risks to human life and property.
Despite advancements in safety training, laboratory personnel may still unknowingly engage in unsafe practices.
There is a growing concern about large language models (LLMs) for guidance in various fields.
arXiv Detail & Related papers (2024-10-18T05:21:05Z) - SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal Behaviors [64.9938658716425]
Existing evaluations of large language models' (LLMs) ability to recognize and reject unsafe user requests face three limitations.
First, existing methods often use coarse-grained of unsafe topics, and are over-representing some fine-grained topics.
Second, linguistic characteristics and formatting of prompts are often overlooked, like different languages, dialects, and more -- which are only implicitly considered in many evaluations.
Third, existing evaluations rely on large LLMs for evaluation, which can be expensive.
arXiv Detail & Related papers (2024-06-20T17:56:07Z) - Current state of LLM Risks and AI Guardrails [0.0]
Large language models (LLMs) have become increasingly sophisticated, leading to widespread deployment in sensitive applications where safety and reliability are paramount.
These risks necessitate the development of "guardrails" to align LLMs with desired behaviors and mitigate potential harm.
This work explores the risks associated with deploying LLMs and evaluates current approaches to implementing guardrails and model alignment techniques.
arXiv Detail & Related papers (2024-06-16T22:04:10Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
Open-sourcing of large language models (LLMs) accelerates application development, innovation, and scientific progress.
Our investigation exposes a critical oversight in this belief.
By deploying carefully designed demonstrations, our research demonstrates that base LLMs could effectively interpret and execute malicious instructions.
arXiv Detail & Related papers (2024-04-16T13:22:54Z) - An Insight into Security Code Review with LLMs: Capabilities, Obstacles and Influential Factors [9.309745288471374]
Security code review is a time-consuming and labor-intensive process.
Existing security analysis tools struggle with poor generalization, high false positive rates, and coarse detection granularity.
Large Language Models (LLMs) have been considered promising candidates for addressing those challenges.
arXiv Detail & Related papers (2024-01-29T17:13:44Z) - LLM4Vuln: A Unified Evaluation Framework for Decoupling and Enhancing LLMs' Vulnerability Reasoning [20.463200377413255]
Large language models (LLMs) have demonstrated significant potential in various tasks, including vulnerability detection.
This paper aims to isolate LLMs' vulnerability reasoning from other capabilities, such as vulnerability knowledge adoption.
We conducted experiments with 97 ground-truth vulnerabilities and 97 non-vulnerable cases in Solidity and Java.
arXiv Detail & Related papers (2024-01-29T14:32:27Z) - Safety Assessment of Chinese Large Language Models [51.83369778259149]
Large language models (LLMs) may generate insulting and discriminatory content, reflect incorrect social values, and may be used for malicious purposes.
To promote the deployment of safe, responsible, and ethical AI, we release SafetyPrompts including 100k augmented prompts and responses by LLMs.
arXiv Detail & Related papers (2023-04-20T16:27:35Z) - Prompting GPT-3 To Be Reliable [117.23966502293796]
This work decomposes reliability into four facets: generalizability, fairness, calibration, and factuality.
We find that GPT-3 outperforms smaller-scale supervised models by large margins on all these facets.
arXiv Detail & Related papers (2022-10-17T14:52:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.