論文の概要: Storyboard guided Alignment for Fine-grained Video Action Recognition
- arxiv url: http://arxiv.org/abs/2410.14238v1
- Date: Fri, 18 Oct 2024 07:40:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:25:17.978522
- Title: Storyboard guided Alignment for Fine-grained Video Action Recognition
- Title(参考訳): 微粒な映像行動認識のためのストーリーボード案内アライメント
- Authors: Enqi Liu, Liyuan Pan, Yan Yang, Yiran Zhong, Zhijing Wu, Xinxiao Wu, Liu Liu,
- Abstract要約: 微細なビデオアクション認識は、ビデオテキストマッチング問題として概念化することができる。
i) 異なるグローバルなセマンティクスを持つビデオは、類似したアトミックなアクションや外観を共有し、(ii) ビデオ内のアトミックなアクションは、瞬間的、遅い、あるいは、グローバルなビデオセマンティクスと直接的に関係しない、という2つの観察に基づく多粒度フレームワークを提案する。
- 参考スコア(独自算出の注目度): 32.02631248389487
- License:
- Abstract: Fine-grained video action recognition can be conceptualized as a video-text matching problem. Previous approaches often rely on global video semantics to consolidate video embeddings, which can lead to misalignment in video-text pairs due to a lack of understanding of action semantics at an atomic granularity level. To tackle this challenge, we propose a multi-granularity framework based on two observations: (i) videos with different global semantics may share similar atomic actions or appearances, and (ii) atomic actions within a video can be momentary, slow, or even non-directly related to the global video semantics. Inspired by the concept of storyboarding, which disassembles a script into individual shots, we enhance global video semantics by generating fine-grained descriptions using a pre-trained large language model. These detailed descriptions capture common atomic actions depicted in videos. A filtering metric is proposed to select the descriptions that correspond to the atomic actions present in both the videos and the descriptions. By employing global semantics and fine-grained descriptions, we can identify key frames in videos and utilize them to aggregate embeddings, thereby making the embedding more accurate. Extensive experiments on various video action recognition datasets demonstrate superior performance of our proposed method in supervised, few-shot, and zero-shot settings.
- Abstract(参考訳): 微細なビデオアクション認識は、ビデオテキストマッチング問題として概念化することができる。
従来のアプローチでは、ビデオ埋め込みの統合にグローバルなビデオセマンティクスを頼りにしており、アトミックな粒度レベルでのアクションセマンティクスの理解の欠如により、ビデオテキストペアの誤調整につながる可能性がある。
この課題に対処するために,2つの観測結果に基づく多粒度フレームワークを提案する。
i) 異なるグローバルな意味を持つビデオは、類似したアトミックな行動や外観を共有し、
(ii) ビデオ内のアトミックアクションは、瞬間的、遅く、あるいは、グローバルなビデオセマンティクスと直接的に関係しない。
個別のショットにスクリプトを分解するストーリーボードの概念に触発されて,事前学習された大規模言語モデルを用いて詳細な記述を生成することにより,グローバルなビデオセマンティクスを向上する。
これらの詳細な説明は、ビデオで描かれた一般的な原子のアクションをキャプチャする。
ビデオと記述の両方に存在する原子的作用に対応する記述を選択するために、フィルタリングメトリックが提案されている。
グローバルなセマンティクスときめ細かい記述を用いることで、ビデオのキーフレームを識別し、埋め込みを集約することで、埋め込みをより正確にすることができる。
様々なビデオ行動認識データセットに対する大規模な実験により、教師付き、少数ショット、ゼロショット設定において提案手法の優れた性能を示す。
関連論文リスト
- RACCooN: A Versatile Instructional Video Editing Framework with Auto-Generated Narratives [58.15403987979496]
本稿では,RACCooNを提案する。
ビデオ生成モデルは、自動生成された物語や指示を取り入れて、生成されたコンテンツの質と精度を高める。
提案フレームワークは,ビデオ・パラグラフ生成,映像コンテンツ編集において優れた多機能性を示し,さらに拡張するために他のSoTAビデオ生成モデルに組み込むことができる。
論文 参考訳(メタデータ) (2024-05-28T17:46:36Z) - OmniVid: A Generative Framework for Universal Video Understanding [133.73878582161387]
我々は、言語をラベルとして使用し、時間とボックストークンを付加することで、ビデオ理解タスクの出力空間を統合することを目指している。
これにより、分類、キャプション、ローカライゼーションなど、さまざまなタイプのビデオタスクに対処できる。
このようなシンプルで素直なアイデアは極めて効果的であり、最先端ないし競争的な結果を得ることができることを実証する。
論文 参考訳(メタデータ) (2024-03-26T17:59:24Z) - Shot2Story20K: A New Benchmark for Comprehensive Understanding of
Multi-shot Videos [58.13927287437394]
マルチショットビデオ理解ベンチマークShot2Story20Kに、詳細なショットレベルのキャプションと包括的ビデオ要約を付加する。
予備実験は、長大かつ包括的なビデオ要約を生成するためのいくつかの課題を示している。
論文 参考訳(メタデータ) (2023-12-16T03:17:30Z) - OST: Refining Text Knowledge with Optimal Spatio-Temporal Descriptor for General Video Recognition [8.18503795495178]
我々は、一般化可能なビデオ認識を容易にするために、テキスト知識の洗練を優先する。
カテゴリー名の区別の少ない意味空間の限界に対処するため、我々は大規模言語モデル (LLM) を推し進める。
我々の最良のモデルは、Kinetics-600で最先端のゼロショット精度75.1%を達成する。
論文 参考訳(メタデータ) (2023-11-30T13:32:43Z) - SPOT! Revisiting Video-Language Models for Event Understanding [31.49859545456809]
本稿では,既存のビデオ言語モデルのイベントレベルの相違点を識別する能力のベンチマークを行うSPOT Proberを紹介する。
これらの正負のキャプションで既存のビデオ言語モデルを評価した結果、操作されたイベントのほとんどを区別できないことがわかった。
そこで本研究では,これらの操作したイベントキャプションをハードネガティブなサンプルとしてプラグインし,イベント理解モデルの改善に有効であることを示す。
論文 参考訳(メタデータ) (2023-11-21T18:43:07Z) - Temporal Perceiving Video-Language Pre-training [112.1790287726804]
本研究は、時間的・意味的な微粒なアライメントを可能にする、新しいテキスト-ビデオのローカライゼーション・プレテキストタスクを導入する。
具体的には、テキスト-ビデオのローカライゼーションは、テキスト記述が与えられたビデオの開始と終了の境界を予測するモーメント検索から成っている。
提案手法は,細粒度フレーム表現と単語表現を結合し,単一モードにおける異なるインスタンスの表現を暗黙的に区別する。
論文 参考訳(メタデータ) (2023-01-18T12:15:47Z) - TL;DW? Summarizing Instructional Videos with Task Relevance &
Cross-Modal Saliency [133.75876535332003]
我々は,ビデオ要約の未探索領域である指導ビデオの要約に焦点をあてる。
既存のビデオ要約データセットは、手動のフレームレベルのアノテーションに依存している。
本稿では,文脈対応の時間的ビデオエンコーダとセグメントスコアリング変換器を組み合わせた指導ビデオ要約ネットワークを提案する。
論文 参考訳(メタデータ) (2022-08-14T04:07:40Z) - Bridge-Prompt: Towards Ordinal Action Understanding in Instructional
Videos [92.18898962396042]
本稿では,隣接するアクション間のセマンティクスをモデル化する,プロンプトベースのフレームワークであるBridge-Promptを提案する。
我々は個々のアクションラベルを、個々のアクションセマンティクスのギャップを埋める監視のための統合テキストプロンプトとして再構成する。
Br-Promptは複数のベンチマークで最先端を達成する。
論文 参考訳(メタデータ) (2022-03-26T15:52:27Z) - Towards Diverse Paragraph Captioning for Untrimmed Videos [40.205433926432434]
既存のアプローチでは、主にイベント検出とイベントキャプションという2つのステップで問題を解決している。
本稿では,問題のあるイベント検出段階を抽出し,未トリミングビデオの段落を直接生成する段落生成モデルを提案する。
論文 参考訳(メタデータ) (2021-05-30T09:28:43Z) - Open-book Video Captioning with Retrieve-Copy-Generate Network [42.374461018847114]
本稿では,従来のビデオキャプションタスクを新たなパラダイム,すなわちOpen-book Video Captioningに変換する。
本稿では,プラグイン可能なビデオ・テキスト検索システムを構築し,学習コーパスからのヒントとして文を効率的に検索するRetrieve-Copy-Generateネットワークを提案する。
本フレームワークは,従来の検索手法とオルソドックスエンコーダデコーダ法を協調して,検索した文中の多様な表現を描画するだけでなく,ビデオの自然な,正確な内容を生成する。
論文 参考訳(メタデータ) (2021-03-09T08:17:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。