Almost-Linear RNNs Yield Highly Interpretable Symbolic Codes in Dynamical Systems Reconstruction
- URL: http://arxiv.org/abs/2410.14240v1
- Date: Fri, 18 Oct 2024 07:44:12 GMT
- Title: Almost-Linear RNNs Yield Highly Interpretable Symbolic Codes in Dynamical Systems Reconstruction
- Authors: Manuel Brenner, Christoph Jürgen Hemmer, Zahra Monfared, Daniel Durstewitz,
- Abstract summary: We introduce Almost-Linear Recurrent Neural Networks (AL-RNNs) which automatically and robustly produce parsimonious PWL representations of Dynamical Systems (DS) from time series data.
AL-RNNs can be efficiently trained with any SOTA algorithm for dynamical systems reconstruction (DSR)
We show that for the Lorenz and R"ossler systems, AL-RNNs discover, in a purely data-driven way, the known topologically minimal PWL representations of the corresponding chaotic attractors.
- Score: 8.473495734873872
- License:
- Abstract: Dynamical systems (DS) theory is fundamental for many areas of science and engineering. It can provide deep insights into the behavior of systems evolving in time, as typically described by differential or recursive equations. A common approach to facilitate mathematical tractability and interpretability of DS models involves decomposing nonlinear DS into multiple linear DS separated by switching manifolds, i.e. piecewise linear (PWL) systems. PWL models are popular in engineering and a frequent choice in mathematics for analyzing the topological properties of DS. However, hand-crafting such models is tedious and only possible for very low-dimensional scenarios, while inferring them from data usually gives rise to unnecessarily complex representations with very many linear subregions. Here we introduce Almost-Linear Recurrent Neural Networks (AL-RNNs) which automatically and robustly produce most parsimonious PWL representations of DS from time series data, using as few PWL nonlinearities as possible. AL-RNNs can be efficiently trained with any SOTA algorithm for dynamical systems reconstruction (DSR), and naturally give rise to a symbolic encoding of the underlying DS that provably preserves important topological properties. We show that for the Lorenz and R\"ossler systems, AL-RNNs discover, in a purely data-driven way, the known topologically minimal PWL representations of the corresponding chaotic attractors. We further illustrate on two challenging empirical datasets that interpretable symbolic encodings of the dynamics can be achieved, tremendously facilitating mathematical and computational analysis of the underlying systems.
Related papers
- Recurrent Neural Networks Learn to Store and Generate Sequences using Non-Linear Representations [54.17275171325324]
We present a counterexample to the Linear Representation Hypothesis (LRH)
When trained to repeat an input token sequence, neural networks learn to represent the token at each position with a particular order of magnitude, rather than a direction.
These findings strongly indicate that interpretability research should not be confined to the LRH.
arXiv Detail & Related papers (2024-08-20T15:04:37Z) - Metric-Entropy Limits on Nonlinear Dynamical System Learning [4.069144210024563]
We show that recurrent neural networks (RNNs) are capable of learning nonlinear systems that satisfy a Lipschitz property and forget past inputs fast enough in a metric-entropy optimal manner.
As the sets of sequence-to-sequence maps we consider are significantly more massive than function classes generally considered in deep neural network approximation theory, a refined metric-entropy characterization is needed.
arXiv Detail & Related papers (2024-07-01T12:57:03Z) - Generalized Teacher Forcing for Learning Chaotic Dynamics [9.841893058953625]
Chaotic dynamical systems (DS) are ubiquitous in nature and society. Often we are interested in reconstructing such systems from observed time series for prediction or mechanistic insight.
We show on several DS that with these amendments we can reconstruct DS better than current SOTA algorithms, in much lower dimensions.
This work thus led to a simple yet powerful DS reconstruction algorithm which is highly interpretable at the same time.
arXiv Detail & Related papers (2023-06-07T13:04:34Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Integrating Multimodal Data for Joint Generative Modeling of Complex Dynamics [6.848555909346641]
We provide an efficient framework to combine various sources of information for optimal reconstruction.
Our framework is fully textitgenerative, producing, after training, trajectories with the same geometrical and temporal structure as those of the ground truth system.
arXiv Detail & Related papers (2022-12-15T15:21:28Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
We provide theoretical evidence for learning low-dimensional state spaces, which can also model long-term memory.
Experiments corroborate our theory, demonstrating extrapolation via learning low-dimensional state spaces with both linear and non-linear RNNs.
arXiv Detail & Related papers (2022-10-25T14:45:15Z) - Tractable Dendritic RNNs for Reconstructing Nonlinear Dynamical Systems [7.045072177165241]
We augment a piecewise-linear recurrent neural network (RNN) by a linear spline basis expansion.
We show that this approach retains all the theoretically appealing properties of the simple PLRNN, yet boosts its capacity for approximating arbitrary nonlinear dynamical systems in comparatively low dimensions.
arXiv Detail & Related papers (2022-07-06T09:43:03Z) - Reverse engineering recurrent neural networks with Jacobian switching
linear dynamical systems [24.0378100479104]
Recurrent neural networks (RNNs) are powerful models for processing time-series data.
The framework of reverse engineering a trained RNN by linearizing around its fixed points has provided insight, but the approach has significant challenges.
We present a new model that overcomes these limitations by co-training an RNN with a novel switching linear dynamical system (SLDS) formulation.
arXiv Detail & Related papers (2021-11-01T20:49:30Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Kernel and Rich Regimes in Overparametrized Models [69.40899443842443]
We show that gradient descent on overparametrized multilayer networks can induce rich implicit biases that are not RKHS norms.
We also demonstrate this transition empirically for more complex matrix factorization models and multilayer non-linear networks.
arXiv Detail & Related papers (2020-02-20T15:43:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.