論文の概要: HYPNOS : Highly Precise Foreground-focused Diffusion Finetuning for Inanimate Objects
- arxiv url: http://arxiv.org/abs/2410.14265v2
- Date: Tue, 12 Nov 2024 09:58:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:16:51.761904
- Title: HYPNOS : Highly Precise Foreground-focused Diffusion Finetuning for Inanimate Objects
- Title(参考訳): HYPNOS : 高精度な前景焦点拡散微細化
- Authors: Oliverio Theophilus Nathanael, Jonathan Samuel Lumentut, Nicholas Hans Muliawan, Edbert Valencio Angky, Felix Indra Kurniadi, Alfi Yusrotis Zakiyyah, Jeklin Harefa,
- Abstract要約: 頑健な拡散モデルは、ある積の結果のほぼ完全な再構成を行う能力によって決定される。
現在の顕著な拡散に基づく微調整技術は、前景オブジェクトの一貫性を維持するには不十分である。
我々は,高精度な前景焦点拡散微調整技術であるHypnosを提案する。
- 参考スコア(独自算出の注目度): 1.706656684496508
- License:
- Abstract: In recent years, personalized diffusion-based text-to-image generative tasks have been a hot topic in computer vision studies. A robust diffusion model is determined by its ability to perform near-perfect reconstruction of certain product outcomes given few related input samples. Unfortunately, the current prominent diffusion-based finetuning technique falls short in maintaining the foreground object consistency while being constrained to produce diverse backgrounds in the image outcome. In the worst scenario, the overfitting issue may occur, meaning that the foreground object is less controllable due to the condition above, for example, the input prompt information is transferred ambiguously to both foreground and background regions, instead of the supposed background region only. To tackle the issues above, we proposed Hypnos, a highly precise foreground-focused diffusion finetuning technique. On the image level, this strategy works best for inanimate object generation tasks, and to do so, Hypnos implements two main approaches, namely: (i) a content-centric prompting strategy and (ii) the utilization of our additional foreground-focused discriminative module. The utilized module is connected with the diffusion model and finetuned with our proposed set of supervision mechanism. Combining the strategies above yielded to the foreground-background disentanglement capability of the diffusion model. Our experimental results showed that the proposed strategy gave a more robust performance and visually pleasing results compared to the former technique. For better elaborations, we also provided extensive studies to assess the fruitful outcomes above, which reveal how personalization behaves in regard to several training conditions.
- Abstract(参考訳): 近年、コンピュータビジョン研究において、個人化拡散に基づくテキスト・画像生成タスクがホットな話題となっている。
頑健な拡散モデルは、関連するサンプルがほとんどない場合に、特定の製品結果のほぼ完全な再構成を行う能力によって決定される。
残念なことに、現在の顕著な拡散ベースファインタニング技術は、画像結果のさまざまな背景を制約しながら、前景オブジェクトの一貫性を維持するのに不足している。
最悪のシナリオでは、例えば、入力プロンプト情報は、想定された背景領域のみではなく、前景領域と背景領域の両方にあいまいに転送される。
以上の課題に対処するため,我々は,高精度な前景焦点拡散微調整技術であるHypnosを提案した。
イメージレベルでは、この戦略は匿名オブジェクト生成タスクに最適であり、そのためにHypnosは2つの主要なアプローチを実装している。
(i)内容中心の促進戦略及び
(II) 前景に焦点をあてた識別モジュールの利用について検討した。
利用モジュールは拡散モデルと接続され,提案した監視機構のセットに微調整される。
以上の戦略を組み合わせることで, 拡散モデルの背景・裏面のゆがみ特性が向上した。
実験の結果,提案手法は従来の手法と比較して,より堅牢で視覚的に満足な結果が得られることがわかった。
また, より優れた実験を行うために, 上記の実りある結果を評価するための広範な研究を行い, 個人化がいくつかの訓練条件に対してどのように振る舞うかを明らかにした。
関連論文リスト
- TALE: Training-free Cross-domain Image Composition via Adaptive Latent Manipulation and Energy-guided Optimization [59.412236435627094]
TALEは、テキストから画像への拡散モデルの生成機能を利用する、トレーニング不要のフレームワークである。
TALEにはAdaptive Latent ManipulationとEnergy-Guided Latent Optimizationという2つのメカニズムが備わっている。
本実験は,TALEが従来のベースラインを超え,画像誘導合成における最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-08-07T08:52:21Z) - What Matters When Repurposing Diffusion Models for General Dense Perception Tasks? [49.84679952948808]
最近の研究は、高密度知覚タスクのためのT2I拡散モデルを簡単に調整することで有望な結果を示す。
拡散前処理における伝達効率と性能に影響を及ぼす重要な要因を徹底的に検討する。
我々の研究は、濃密な視覚認知タスクに特化した効果的な決定論的ワンステップ微調整パラダイムであるGenPerceptの開発において頂点に達した。
論文 参考訳(メタデータ) (2024-03-10T04:23:24Z) - Bridging Generative and Discriminative Models for Unified Visual
Perception with Diffusion Priors [56.82596340418697]
本稿では,豊富な生成前駆体を含む事前学習型安定拡散(SD)モデルと,階層的表現を統合可能な統一型ヘッド(Uヘッド)と,識別前駆体を提供する適応型専門家からなる,シンプルで効果的なフレームワークを提案する。
包括的調査では、異なる時間ステップで潜伏変数に隠された知覚の粒度や様々なU-netステージなど、バーマスの潜在的な特性が明らかになった。
有望な結果は,有望な学習者としての拡散モデルの可能性を示し,情報的かつ堅牢な視覚表現の確立にその意義を定めている。
論文 参考訳(メタデータ) (2024-01-29T10:36:57Z) - Harnessing Diffusion Models for Visual Perception with Meta Prompts [68.78938846041767]
本稿では,視覚知覚タスクの拡散モデルを用いた簡易かつ効果的な手法を提案する。
学習可能な埋め込み(メタプロンプト)を事前学習した拡散モデルに導入し、知覚の適切な特徴を抽出する。
提案手法は,NYU 深度 V2 と KITTI の深度推定タスク,および CityScapes のセマンティックセグメンテーションタスクにおいて,新しい性能記録を実現する。
論文 参考訳(メタデータ) (2023-12-22T14:40:55Z) - JoReS-Diff: Joint Retinex and Semantic Priors in Diffusion Model for Low-light Image Enhancement [69.6035373784027]
低照度画像強調(LLIE)は条件付き拡散モデルを用いて有望な性能を実現している。
従来手法は、タスク固有の条件戦略の十分な定式化の重要性を無視するものであった。
本稿では,Retinex および semantic-based pre-processing condition を付加した新しいアプローチである JoReS-Diff を提案する。
論文 参考訳(メタデータ) (2023-12-20T08:05:57Z) - Phasic Content Fusing Diffusion Model with Directional Distribution
Consistency for Few-Shot Model Adaption [73.98706049140098]
本稿では,方向分布の整合性を損なう少数ショット拡散モデルを用いた新しいファシックコンテンツを提案する。
具体的には、ファシックコンテンツ融合を用いたファシックトレーニング戦略を設計し、tが大きければ、モデルがコンテンツやスタイル情報を学ぶのに役立てる。
最後に、ドメイン適応時の構造整合性を高めるクロスドメイン構造ガイダンス戦略を提案する。
論文 参考訳(メタデータ) (2023-09-07T14:14:11Z) - Diffusion Model for Dense Matching [34.13580888014]
ペア画像間の密接な対応を確立する目的は、データ項と先行項の2つの項からなる。
我々はDiffMatchを提案する。DiffMatchは、データと事前条件の両方を明示的にモデル化する新しい条件付き拡散ベースのフレームワークである。
実験の結果,既存の手法に比べて,提案手法の大幅な性能向上が示された。
論文 参考訳(メタデータ) (2023-05-30T14:58:24Z) - DiffusionSeg: Adapting Diffusion Towards Unsupervised Object Discovery [20.787180028571694]
DiffusionSegは、2段階戦略を含む合成探索フレームワークである。
我々は,豊富な画像を合成し,第1段階でマスクを得るための新しいトレーニングフリーアテンションカットを提案する。
第2のエクスプロイト段階では、構造的ギャップを埋めるために、インバージョン技術を用いて、与えられた画像を拡散特徴にマッピングする。
論文 参考訳(メタデータ) (2023-03-17T07:47:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。