HYPNOS : Highly Precise Foreground-focused Diffusion Finetuning for Inanimate Objects
- URL: http://arxiv.org/abs/2410.14265v2
- Date: Tue, 12 Nov 2024 09:58:13 GMT
- Title: HYPNOS : Highly Precise Foreground-focused Diffusion Finetuning for Inanimate Objects
- Authors: Oliverio Theophilus Nathanael, Jonathan Samuel Lumentut, Nicholas Hans Muliawan, Edbert Valencio Angky, Felix Indra Kurniadi, Alfi Yusrotis Zakiyyah, Jeklin Harefa,
- Abstract summary: A robust diffusion model is determined by its ability to perform near-perfect reconstruction of certain product outcomes.
The current prominent diffusion-based finetuning technique falls short in maintaining the foreground object consistency.
We propose Hypnos, a highly precise foreground-focused diffusion finetuning technique.
- Score: 1.706656684496508
- License:
- Abstract: In recent years, personalized diffusion-based text-to-image generative tasks have been a hot topic in computer vision studies. A robust diffusion model is determined by its ability to perform near-perfect reconstruction of certain product outcomes given few related input samples. Unfortunately, the current prominent diffusion-based finetuning technique falls short in maintaining the foreground object consistency while being constrained to produce diverse backgrounds in the image outcome. In the worst scenario, the overfitting issue may occur, meaning that the foreground object is less controllable due to the condition above, for example, the input prompt information is transferred ambiguously to both foreground and background regions, instead of the supposed background region only. To tackle the issues above, we proposed Hypnos, a highly precise foreground-focused diffusion finetuning technique. On the image level, this strategy works best for inanimate object generation tasks, and to do so, Hypnos implements two main approaches, namely: (i) a content-centric prompting strategy and (ii) the utilization of our additional foreground-focused discriminative module. The utilized module is connected with the diffusion model and finetuned with our proposed set of supervision mechanism. Combining the strategies above yielded to the foreground-background disentanglement capability of the diffusion model. Our experimental results showed that the proposed strategy gave a more robust performance and visually pleasing results compared to the former technique. For better elaborations, we also provided extensive studies to assess the fruitful outcomes above, which reveal how personalization behaves in regard to several training conditions.
Related papers
- TALE: Training-free Cross-domain Image Composition via Adaptive Latent Manipulation and Energy-guided Optimization [59.412236435627094]
TALE is a training-free framework harnessing the generative capabilities of text-to-image diffusion models.
We equip TALE with two mechanisms dubbed Adaptive Latent Manipulation and Energy-guided Latent Optimization.
Our experiments demonstrate that TALE surpasses prior baselines and attains state-of-the-art performance in image-guided composition.
arXiv Detail & Related papers (2024-08-07T08:52:21Z) - What Matters When Repurposing Diffusion Models for General Dense Perception Tasks? [49.84679952948808]
Recent works show promising results by simply fine-tuning T2I diffusion models for dense perception tasks.
We conduct a thorough investigation into critical factors that affect transfer efficiency and performance when using diffusion priors.
Our work culminates in the development of GenPercept, an effective deterministic one-step fine-tuning paradigm tailed for dense visual perception tasks.
arXiv Detail & Related papers (2024-03-10T04:23:24Z) - Bridging Generative and Discriminative Models for Unified Visual
Perception with Diffusion Priors [56.82596340418697]
We propose a simple yet effective framework comprising a pre-trained Stable Diffusion (SD) model containing rich generative priors, a unified head (U-head) capable of integrating hierarchical representations, and an adapted expert providing discriminative priors.
Comprehensive investigations unveil potential characteristics of Vermouth, such as varying granularity of perception concealed in latent variables at distinct time steps and various U-net stages.
The promising results demonstrate the potential of diffusion models as formidable learners, establishing their significance in furnishing informative and robust visual representations.
arXiv Detail & Related papers (2024-01-29T10:36:57Z) - Harnessing Diffusion Models for Visual Perception with Meta Prompts [68.78938846041767]
We propose a simple yet effective scheme to harness a diffusion model for visual perception tasks.
We introduce learnable embeddings (meta prompts) to the pre-trained diffusion models to extract proper features for perception.
Our approach achieves new performance records in depth estimation tasks on NYU depth V2 and KITTI, and in semantic segmentation task on CityScapes.
arXiv Detail & Related papers (2023-12-22T14:40:55Z) - JoReS-Diff: Joint Retinex and Semantic Priors in Diffusion Model for Low-light Image Enhancement [69.6035373784027]
Low-light image enhancement (LLIE) has achieved promising performance by employing conditional diffusion models.
Previous methods may neglect the importance of a sufficient formulation of task-specific condition strategy.
We propose JoReS-Diff, a novel approach that incorporates Retinex- and semantic-based priors as the additional pre-processing condition.
arXiv Detail & Related papers (2023-12-20T08:05:57Z) - Phasic Content Fusing Diffusion Model with Directional Distribution
Consistency for Few-Shot Model Adaption [73.98706049140098]
We propose a novel phasic content fusing few-shot diffusion model with directional distribution consistency loss.
Specifically, we design a phasic training strategy with phasic content fusion to help our model learn content and style information when t is large.
Finally, we propose a cross-domain structure guidance strategy that enhances structure consistency during domain adaptation.
arXiv Detail & Related papers (2023-09-07T14:14:11Z) - Diffusion Model for Dense Matching [34.13580888014]
The objective for establishing dense correspondence between paired images consists of two terms: a data term and a prior term.
We propose DiffMatch, a novel conditional diffusion-based framework designed to explicitly model both the data and prior terms.
Our experimental results demonstrate significant performance improvements of our method over existing approaches.
arXiv Detail & Related papers (2023-05-30T14:58:24Z) - DiffusionSeg: Adapting Diffusion Towards Unsupervised Object Discovery [20.787180028571694]
DiffusionSeg is a synthesis-exploitation framework containing two-stage strategies.
We synthesize abundant images, and propose a novel training-free AttentionCut to obtain masks in the first stage.
In the second exploitation stage, to bridge the structural gap, we use the inversion technique, to map the given image back to diffusion features.
arXiv Detail & Related papers (2023-03-17T07:47:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.