What Matters When Repurposing Diffusion Models for General Dense Perception Tasks?
- URL: http://arxiv.org/abs/2403.06090v3
- Date: Thu, 24 Oct 2024 07:36:13 GMT
- Title: What Matters When Repurposing Diffusion Models for General Dense Perception Tasks?
- Authors: Guangkai Xu, Yongtao Ge, Mingyu Liu, Chengxiang Fan, Kangyang Xie, Zhiyue Zhao, Hao Chen, Chunhua Shen,
- Abstract summary: Recent works show promising results by simply fine-tuning T2I diffusion models for dense perception tasks.
We conduct a thorough investigation into critical factors that affect transfer efficiency and performance when using diffusion priors.
Our work culminates in the development of GenPercept, an effective deterministic one-step fine-tuning paradigm tailed for dense visual perception tasks.
- Score: 49.84679952948808
- License:
- Abstract: Extensive pre-training with large data is indispensable for downstream geometry and semantic visual perception tasks. Thanks to large-scale text-to-image (T2I) pretraining, recent works show promising results by simply fine-tuning T2I diffusion models for dense perception tasks. However, several crucial design decisions in this process still lack comprehensive justification, encompassing the necessity of the multi-step stochastic diffusion mechanism, training strategy, inference ensemble strategy, and fine-tuning data quality. In this work, we conduct a thorough investigation into critical factors that affect transfer efficiency and performance when using diffusion priors. Our key findings are: 1) High-quality fine-tuning data is paramount for both semantic and geometry perception tasks. 2) The stochastic nature of diffusion models has a slightly negative impact on deterministic visual perception tasks. 3) Apart from fine-tuning the diffusion model with only latent space supervision, task-specific image-level supervision is beneficial to enhance fine-grained details. These observations culminate in the development of GenPercept, an effective deterministic one-step fine-tuning paradigm tailed for dense visual perception tasks. Different from the previous multi-step methods, our paradigm has a much faster inference speed, and can be seamlessly integrated with customized perception decoders and loss functions for image-level supervision, which is critical to improving the fine-grained details of predictions. Comprehensive experiments on diverse dense visual perceptual tasks, including monocular depth estimation, surface normal estimation, image segmentation, and matting, are performed to demonstrate the remarkable adaptability and effectiveness of our proposed method.
Related papers
- HYPNOS : Highly Precise Foreground-focused Diffusion Finetuning for Inanimate Objects [1.706656684496508]
A robust diffusion model is determined by its ability to perform near-perfect reconstruction of certain product outcomes.
The current prominent diffusion-based finetuning technique falls short in maintaining the foreground object consistency.
We propose Hypnos, a highly precise foreground-focused diffusion finetuning technique.
arXiv Detail & Related papers (2024-10-18T08:20:37Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - Diffusion Model with Cross Attention as an Inductive Bias for Disentanglement [58.9768112704998]
Disentangled representation learning strives to extract the intrinsic factors within observed data.
We introduce a new perspective and framework, demonstrating that diffusion models with cross-attention can serve as a powerful inductive bias.
This is the first work to reveal the potent disentanglement capability of diffusion models with cross-attention, requiring no complex designs.
arXiv Detail & Related papers (2024-02-15T05:07:54Z) - Bridging Generative and Discriminative Models for Unified Visual
Perception with Diffusion Priors [56.82596340418697]
We propose a simple yet effective framework comprising a pre-trained Stable Diffusion (SD) model containing rich generative priors, a unified head (U-head) capable of integrating hierarchical representations, and an adapted expert providing discriminative priors.
Comprehensive investigations unveil potential characteristics of Vermouth, such as varying granularity of perception concealed in latent variables at distinct time steps and various U-net stages.
The promising results demonstrate the potential of diffusion models as formidable learners, establishing their significance in furnishing informative and robust visual representations.
arXiv Detail & Related papers (2024-01-29T10:36:57Z) - Harnessing Diffusion Models for Visual Perception with Meta Prompts [68.78938846041767]
We propose a simple yet effective scheme to harness a diffusion model for visual perception tasks.
We introduce learnable embeddings (meta prompts) to the pre-trained diffusion models to extract proper features for perception.
Our approach achieves new performance records in depth estimation tasks on NYU depth V2 and KITTI, and in semantic segmentation task on CityScapes.
arXiv Detail & Related papers (2023-12-22T14:40:55Z) - DiffusionSeg: Adapting Diffusion Towards Unsupervised Object Discovery [20.787180028571694]
DiffusionSeg is a synthesis-exploitation framework containing two-stage strategies.
We synthesize abundant images, and propose a novel training-free AttentionCut to obtain masks in the first stage.
In the second exploitation stage, to bridge the structural gap, we use the inversion technique, to map the given image back to diffusion features.
arXiv Detail & Related papers (2023-03-17T07:47:55Z) - Pro-tuning: Unified Prompt Tuning for Vision Tasks [133.12978197265596]
Fine-tuning is the de-facto approach to leverage pre-trained vision models to perform downstream tasks.
In this work, we propose parameter-efficient Prompt tuning (Pro-tuning) to adapt frozen vision models to various downstream vision tasks.
arXiv Detail & Related papers (2022-07-28T21:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.