論文の概要: PTR: A Pre-trained Language Model for Trajectory Recovery
- arxiv url: http://arxiv.org/abs/2410.14281v1
- Date: Fri, 18 Oct 2024 08:38:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:24:47.006474
- Title: PTR: A Pre-trained Language Model for Trajectory Recovery
- Title(参考訳): PTR: 軌道復元のための事前学習型言語モデル
- Authors: Tonglong Wei, Yan Lin, Youfang Lin, Shengnan Guo, Jilin Hu, Gao Cong, Huaiyu Wan,
- Abstract要約: そこで我々は, PTR と呼ばれるフレームワークを提案し, 限られた高密度軌跡データの問題を緩和する。
PTRは明示的な軌道プロンプトを組み込み、複数のサンプリング間隔を持つデータセットでトレーニングされる。
また、軌道点を符号化し、観測点と欠点の両方の埋め込みをPLMに理解可能な形式に変換する軌道埋め込み器を提案する。
- 参考スコア(独自算出の注目度): 31.08861372332931
- License:
- Abstract: Spatiotemporal trajectory data is vital for web-of-things services and is extensively collected and analyzed by web-based hardware and platforms. However, issues such as service interruptions and network instability often lead to sparsely recorded trajectories, resulting in a loss of detailed movement data. As a result, recovering these trajectories to restore missing information becomes essential. Despite progress, several challenges remain unresolved. First, the lack of large-scale dense trajectory data hampers the performance of existing deep learning methods, which rely heavily on abundant data for supervised training. Second, current methods struggle to generalize across sparse trajectories with varying sampling intervals, necessitating separate re-training for each interval and increasing computational costs. Third, external factors crucial for the recovery of missing points are not fully incorporated. To address these challenges, we propose a framework called PTR. This framework mitigates the issue of limited dense trajectory data by leveraging the capabilities of pre-trained language models (PLMs). PTR incorporates an explicit trajectory prompt and is trained on datasets with multiple sampling intervals, enabling it to generalize effectively across different intervals in sparse trajectories. To capture external factors, we introduce an implicit trajectory prompt that models road conditions, providing richer information for recovering missing points. Additionally, we present a trajectory embedder that encodes trajectory points and transforms the embeddings of both observed and missing points into a format comprehensible to PLMs. Experimental results on two public trajectory datasets with three sampling intervals demonstrate the efficacy and scalability of PTR.
- Abstract(参考訳): 時空間軌跡データはWeb-of-Thingsサービスにとって不可欠であり、Webベースのハードウェアやプラットフォームによって広範囲に収集され分析される。
しかし、サービス中断やネットワーク不安定といった問題はしばしばわずかに記録された軌道につながり、詳細な移動データが失われる。
その結果、これらの軌跡を復元して行方不明情報を復元することが不可欠となる。
進歩にもかかわらず、いくつかの課題は未解決のままである。
第一に、大規模で高密度な軌跡データがないことは、教師あり訓練のための豊富なデータに大きく依存する既存のディープラーニング手法の性能を損なう。
第二に、現在の手法は、サンプリング間隔の異なるスパース軌跡をまたいだ一般化に苦慮し、各間隔で個別に再訓練し、計算コストを増大させる。
第三に、欠落点の回復に不可欠な外部要因が完全には組み込まれていない。
これらの課題に対処するため,我々はPTRと呼ばれるフレームワークを提案する。
このフレームワークは、事前訓練された言語モデル(PLM)の機能を活用することで、限られた高密度な軌跡データの問題を軽減する。
PTRには明示的な軌道プロンプトが組み込まれており、複数のサンプリング間隔を持つデータセットでトレーニングされており、スパース軌道の異なる間隔で効果的に一般化することができる。
外部要因を捉えるために,道路条件をモデル化する暗黙の軌跡プロンプトを導入する。
さらに、軌道点を符号化し、観測点と欠点の両方の埋め込みをPLMに理解可能な形式に変換する軌道埋め込み器を提案する。
3つのサンプリング間隔を持つ2つの公共軌道データセットの実験結果から,PTRの有効性と拡張性が確認された。
関連論文リスト
- Fast maneuver recovery from aerial observation: trajectory clustering and outliers rejection [43.06493292670652]
2種類のVulnerable Road Users (VRU) が提案される軌道クラスタリング手法によって検討される。
2つの環境がメソッド開発のテストとして機能し、3つの異なる交差点と1つのラウンドアバウトとなる。
論文 参考訳(メタデータ) (2024-07-03T07:22:21Z) - Micro-Macro Spatial-Temporal Graph-based Encoder-Decoder for Map-Constrained Trajectory Recovery [21.911875343270683]
スパース軌道におけるGPSの欠落は、インテリジェント交通システムにおけるユーザの移動行動に深い洞察を与える可能性がある。
個々の軌道のマイクロセマンティックを包括的に捉えることは極めて困難である。
本研究では,マイクロマクロ空間グラフデコーダ(MM-STGED)を提案する。
論文 参考訳(メタデータ) (2024-04-29T22:54:35Z) - Deep Learning for Trajectory Data Management and Mining: A Survey and Beyond [58.63558696061679]
軌道計算は、位置サービス、都市交通、公共安全など、様々な実用用途において重要である。
トラジェクトリ・コンピューティングのためのディープラーニング(DL4Traj)の開発と最近の進歩について概観する。
特に、軌道計算を増強する可能性を持つ大規模言語モデル(LLM)の最近の進歩をカプセル化する。
論文 参考訳(メタデータ) (2024-03-21T05:57:27Z) - UVTM: Universal Vehicle Trajectory Modeling with ST Feature Domain Generation [34.918489559139715]
Universal Vehicle Trajectory (UVTM) は、不完全またはスパースな軌道に基づいて異なるタスクをサポートするように設計されている。
スパーストラジェクトリを効果的に処理するために、疎サンプリングされたトラジェクトリから密サンプリングされたトラジェクトリを再構成することにより、UVTMを事前訓練する。
論文 参考訳(メタデータ) (2024-02-11T15:49:50Z) - A Critical Perceptual Pre-trained Model for Complex Trajectory Recovery [27.347708962204713]
この研究は、複雑な軌道に対するより堅牢な軌道回復を提供することを目的としている。
本稿では,多視点グラフと複雑度認識変換器(MGCAT)モデルを提案する。
その結果,F1スコアが5.22%,F1スコアが8.16%,複雑なトラジェクトリが8.16%向上した。
論文 参考訳(メタデータ) (2023-11-05T12:20:39Z) - Layout Sequence Prediction From Noisy Mobile Modality [53.49649231056857]
軌道予測は、自律運転やロボット工学などの応用における歩行者運動を理解する上で重要な役割を担っている。
現在の軌道予測モデルは、視覚的モダリティからの長い、完全な、正確に観察されたシーケンスに依存する。
本稿では,物体の障害物や視界外を,完全に視認できる軌跡を持つものと同等に扱う新しいアプローチであるLTrajDiffを提案する。
論文 参考訳(メタデータ) (2023-10-09T20:32:49Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
軌道予測は、観測されたシーケンスから実体運動や人間の行動を理解する上で重要な作業である。
現在の方法では、観測されたシーケンスが完了したと仮定し、欠落した値の可能性を無視する。
本稿では,グラフに基づく条件変動リカレントニューラルネットワーク (GC-VRNN) の統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T14:27:27Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
本稿では,Laplacian enhanced Low-rank tensor (LETC) フレームワークを提案する。
次に,提案したモデルをネットワークワイド・クリグにスケールアップするために,複数の有効な数値手法を用いて効率的な解アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-10-21T07:25:57Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
運動不確定性拡散(MID)の逆過程として軌道予測タスクを定式化する新しい枠組みを提案する。
我々は,履歴行動情報と社会的相互作用を状態埋め込みとしてエンコードし,トランジトリの時間的依存性を捉えるためにトランスフォーマーに基づく拡散モデルを考案する。
スタンフォード・ドローンやETH/UCYデータセットなど,人間の軌道予測ベンチマーク実験により,本手法の優位性を実証した。
論文 参考訳(メタデータ) (2022-03-25T16:59:08Z) - Pattern Ensembling for Spatial Trajectory Reconstruction [1.1087735229999818]
類似の軌跡パターンを局所的近傍から使用し,行方不明または信頼性の低い観測をロバストに再構成する手法を提案する。
本手法は,実世界の軌跡の類似性を効果的に活用することにより,拡張長と複素幾何学の欠落した軌跡セグメントを再構成するのに役立つ。
論文 参考訳(メタデータ) (2021-01-25T01:44:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。