論文の概要: Evaluating the evaluators: Towards human-aligned metrics for missing markers reconstruction
- arxiv url: http://arxiv.org/abs/2410.14334v2
- Date: Fri, 28 Mar 2025 15:29:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:29:58.817024
- Title: Evaluating the evaluators: Towards human-aligned metrics for missing markers reconstruction
- Title(参考訳): 評価指標の評価:マーカーの欠如に対するヒトの対応指標に向けて
- Authors: Taras Kucherenko, Derek Peristy, Judith Bütepage,
- Abstract要約: アニメーションデータは、複数のカメラを用いて光学マーカーの位置を確立する光学的モーションキャプチャシステムを通して取得されることが多い。
これは、マーカー再構成の欠如に対する機械学習ベースのソリューションへの関心を喚起した。
この分野の進展を推し進める、より相関性の高い指標のセットを導入し、評価する。
- 参考スコア(独自算出の注目度): 2.6997581911188857
- License:
- Abstract: Animation data is often obtained through optical motion capture systems, which utilize a multitude of cameras to establish the position of optical markers. However, system errors or occlusions can result in missing markers, the manual cleaning of which can be time-consuming. This has sparked interest in machine learning-based solutions for missing marker reconstruction in the academic community. Most academic papers utilize a simplistic mean square error as the main metric. In this paper, we show that this metric does not correlate with subjective perception of the fill quality. Additionally, we introduce and evaluate a set of better-correlated metrics that can drive progress in the field.
- Abstract(参考訳): アニメーションデータは、複数のカメラを用いて光学マーカーの位置を確立する光学的モーションキャプチャシステムを通して取得されることが多い。
しかし、システムエラーや閉塞が原因でマーカーが欠落し、手作業によるクリーニングは時間を要する可能性がある。
このことが、学術コミュニティにおけるマーカー再構築の欠如に対する機械学習ベースのソリューションへの関心を喚起した。
ほとんどの学術論文では、単純な平均二乗誤差を主計量として用いている。
本稿では,この指標が充填品質の主観的知覚と相関しないことを示す。
さらに,この分野の進展を推し進める,関連性の高い指標のセットを導入し,評価する。
関連論文リスト
- Kalib: Markerless Hand-Eye Calibration with Keypoint Tracking [52.4190876409222]
ハンドアイキャリブレーションでは、カメラとロボット間の変換を推定する。
ディープラーニングの最近の進歩は、マーカーレス技術を提供するが、それらは課題を提示している。
自動的かつ普遍的なマーカーレスハンドアイキャリブレーションパイプラインであるKalibを提案する。
論文 参考訳(メタデータ) (2024-08-20T06:03:40Z) - Writing Order Recovery in Complex and Long Static Handwriting [4.0078827278053835]
我々は,薄型静的軌跡の秩序回復を推定する新しいシステムを提案する。
我々は、ペンダウンの開始点を知ることが、回復した筆記の質にどのように影響するかを評価する。
論文 参考訳(メタデータ) (2024-06-05T12:23:17Z) - Cobra Effect in Reference-Free Image Captioning Metrics [58.438648377314436]
視覚言語事前学習モデル(VLM)を活用した参照フリー手法の普及が出現している。
本稿では,基準自由度に欠陥があるかどうかを考察する。
GPT-4Vは生成した文を評価するための評価ツールであり,提案手法がSOTA(State-of-the-art)の性能を達成することを示す。
論文 参考訳(メタデータ) (2024-02-18T12:36:23Z) - Revisiting Evaluation Metrics for Semantic Segmentation: Optimization
and Evaluation of Fine-grained Intersection over Union [113.20223082664681]
そこで本研究では,mIoUsの微細化と,それに対応する最悪の指標を提案する。
これらのきめ細かいメトリクスは、大きなオブジェクトに対するバイアスの低減、よりリッチな統計情報、モデルとデータセット監査に関する貴重な洞察を提供する。
ベンチマークでは,1つの測定値に基づかないことの必要性を強調し,微細なmIoUsが大きな物体への偏りを減少させることを確認した。
論文 参考訳(メタデータ) (2023-10-30T03:45:15Z) - A Locality-based Neural Solver for Optical Motion Capture [37.28597049192196]
ノイズの多いマーカーデータから、マーカーと関節を異なるタイプのノードとして扱う異種グラフニューラルネットワークを提案する。
本手法は,隠蔽マーカー位置誤差の予測精度の観点から,最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-09-01T12:40:17Z) - NeuralMarker: A Framework for Learning General Marker Correspondence [25.822657926255573]
本稿では,映画ポスターなどの一般的なマーカーから,そのようなマーカーを捉えた画像への対応性を推定する問題に取り組む。
本稿では,様々な課題条件下で高密度マーカー対応を推定するニューラルネットワークをトレーニングする新しいフレームワークであるNeuralMarkerを提案する。
我々は、NeuralMarkerが従来の手法を大幅に上回り、拡張現実(AR)やビデオ編集など、新しい興味深いアプリケーションを可能にしていることを示す。
論文 参考訳(メタデータ) (2022-09-19T10:04:38Z) - Recovering Trajectories of Unmarked Joints in 3D Human Actions Using
Latent Space Optimization [16.914342116747825]
モーションキャプチャ(モキャップ)と飛行時間に基づく人間の行動の検知は、ロバストな活動分析を行うために、ますます人気が高まっている。
しかし、可視性、エラーの追跡、マーカーの設定を便利に保つ必要性など、両方のモダリティにはいくつかの実践的な課題がある。
本稿では,非マーク付き関節データの再構成を不備な線形逆問題として扱う。
モカプデータセットとKinectデータセットの両方の実験により、提案手法が行方不明な関節の動作や運動のセマンティクスを回復するのに非常に有効であることを明らかにした。
論文 参考訳(メタデータ) (2020-12-03T16:25:07Z) - Learning Camera Miscalibration Detection [83.38916296044394]
本稿では,視覚センサ,特にRGBカメラの誤校正検出を学習するためのデータ駆動型アプローチに焦点を当てた。
コントリビューションには、RGBカメラの誤校正基準と、この基準に基づく新しい半合成データセット生成パイプラインが含まれる。
深層畳み込みニューラルネットワークをトレーニングすることにより、カメラ固有のパラメータの再校正が必要か否かを判断するパイプラインの有効性を実証する。
論文 参考訳(メタデータ) (2020-05-24T10:32:49Z) - Beyond Photometric Consistency: Gradient-based Dissimilarity for
Improving Visual Odometry and Stereo Matching [46.27086269084186]
本稿では,光度誤差の考え方に基づく画像の登録のための新しい指標について検討する。
ステレオ推定とビジュアルオドメトリーシステムの両方に統合し、典型的な相違と直接画像登録タスクに明確な利点を示す。
論文 参考訳(メタデータ) (2020-04-08T16:13:25Z) - Deep Soft Procrustes for Markerless Volumetric Sensor Alignment [81.13055566952221]
本研究では、より堅牢なマルチセンサ空間アライメントを実現するために、マーカーレスデータ駆動対応推定を改善する。
我々は、幾何学的制約を終末的に典型的なセグメンテーションベースモデルに組み込み、対象のポーズ推定タスクと中間密な分類タスクをブリッジする。
実験により,マーカーベースの手法で同様の結果が得られ,マーカーレス手法よりも優れ,またキャリブレーション構造のポーズ変動にも頑健であることがわかった。
論文 参考訳(メタデータ) (2020-03-23T10:51:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。