2D-3D Deformable Image Registration of Histology Slide and Micro-CT with ML-based Initialization
- URL: http://arxiv.org/abs/2410.14343v1
- Date: Fri, 18 Oct 2024 09:51:43 GMT
- Title: 2D-3D Deformable Image Registration of Histology Slide and Micro-CT with ML-based Initialization
- Authors: Junan Chen, Matteo Ronchetti, Verena Stehl, Van Nguyen, Muhannad Al Kallaa, Mahesh Thalwaththe Gedara, Claudia Lölkes, Stefan Moser, Maximilian Seidl, Matthias Wieczorek,
- Abstract summary: Low image quality of soft tissue CT makes it difficult to correlate structures between histology slide and muCT.
We propose a novel 2D-3D multi-modal deformable image registration method.
- Score: 2.1409936129568377
- License:
- Abstract: Recent developments in the registration of histology and micro-computed tomography ({\mu}CT) have broadened the perspective of pathological applications such as virtual histology based on {\mu}CT. This topic remains challenging because of the low image quality of soft tissue CT. Additionally, soft tissue samples usually deform during the histology slide preparation, making it difficult to correlate the structures between histology slide and {\mu}CT. In this work, we propose a novel 2D-3D multi-modal deformable image registration method. The method uses a machine learning (ML) based initialization followed by the registration. The registration is finalized by an analytical out-of-plane deformation refinement. The method is evaluated on datasets acquired from tonsil and tumor tissues. {\mu}CTs of both phase-contrast and conventional absorption modalities are investigated. The registration results from the proposed method are compared with those from intensity- and keypoint-based methods. The comparison is conducted using both visual and fiducial-based evaluations. The proposed method demonstrates superior performance compared to the other two methods.
Related papers
- Tissue-Contrastive Semi-Masked Autoencoders for Segmentation Pretraining on Chest CT [10.40407976789742]
We propose a new MIM method named Tissue-Contrastive Semi-Masked Autoencoder (TCS-MAE) for modeling chest CT images.
Our method has two novel designs: 1) a tissue-based masking-reconstruction strategy to capture more fine-grained anatomical features, and 2) a dual-AE architecture with contrastive learning between the masked and original image views.
arXiv Detail & Related papers (2024-07-12T03:24:17Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
We present a learning method to optimize sub-sampling patterns for compressed sensing multi-coil MRI.
We use a single-step reconstruction based on the posterior mean estimate given by the diffusion model and the MRI measurement process.
Our method requires as few as five training images to learn effective sampling patterns.
arXiv Detail & Related papers (2023-06-05T22:09:06Z) - A Hybrid Deep Feature-Based Deformable Image Registration Method for
Pathology Images [18.439134996404274]
Pathologists need to combine information from differently stained pathology slices for accurate diagnosis.
This paper proposes a hybrid deep feature-based deformable image registration framework for stained pathology samples.
Our technique outperforms the traditional approaches by 17% with the Average-Average registration target error (rTRE) reaching 0.0034.
arXiv Detail & Related papers (2022-08-16T10:35:18Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Unsupervised Image Registration Towards Enhancing Performance and
Explainability in Cardiac And Brain Image Analysis [3.5718941645696485]
Inter- and intra-modality affine and non-rigid image registration is an essential medical image analysis process in clinical imaging.
We present an un-supervised deep learning registration methodology which can accurately model affine and non-rigid trans-formations.
Our methodology performs bi-directional cross-modality image synthesis to learn modality-invariant latent rep-resentations.
arXiv Detail & Related papers (2022-03-07T12:54:33Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties.
We propose a novel approach to PAT data simulation, which we refer to as "learning to simulate"
We leverage the concept of Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data to generate plausible tissue geometries.
arXiv Detail & Related papers (2021-03-29T11:30:18Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - LEARN++: Recurrent Dual-Domain Reconstruction Network for Compressed
Sensing CT [17.168584459606272]
The LEARN++ model integrates two parallel and interactiveworks to perform image restoration and sinogram inpainting operations on both the image and projection domains simultaneously.
Results show that the proposed LEARN++ model achieves competitive qualitative and quantitative results compared to several state-of-the-art methods in terms of both artifact reduction and detail preservation.
arXiv Detail & Related papers (2020-12-13T07:00:50Z) - Tattoo tomography: Freehand 3D photoacoustic image reconstruction with
an optical pattern [49.240017254888336]
Photoacoustic tomography (PAT) is a novel imaging technique that can resolve both morphological and functional tissue properties.
A current drawback is the limited field-of-view provided by the conventionally applied 2D probes.
We present a novel approach to 3D reconstruction of PAT data that does not require an external tracking system.
arXiv Detail & Related papers (2020-11-10T09:27:56Z) - Dual Convolutional Neural Networks for Breast Mass Segmentation and
Diagnosis in Mammography [18.979126709943085]
We introduce a novel deep learning framework for mammogram image processing, which computes mass segmentation and simultaneously predict diagnosis results.
Our method is constructed in a dual-path architecture that solves the mapping in a dual-problem manner.
Experimental results show that DualCoreNet achieves the best mammography segmentation and classification simultaneously, outperforming recent state-of-the-art models.
arXiv Detail & Related papers (2020-08-07T02:23:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.