Tissue-Contrastive Semi-Masked Autoencoders for Segmentation Pretraining on Chest CT
- URL: http://arxiv.org/abs/2407.08961v1
- Date: Fri, 12 Jul 2024 03:24:17 GMT
- Title: Tissue-Contrastive Semi-Masked Autoencoders for Segmentation Pretraining on Chest CT
- Authors: Jie Zheng, Ru Wen, Haiqin Hu, Lina Wei, Kui Su, Wei Chen, Chen Liu, Jun Wang,
- Abstract summary: We propose a new MIM method named Tissue-Contrastive Semi-Masked Autoencoder (TCS-MAE) for modeling chest CT images.
Our method has two novel designs: 1) a tissue-based masking-reconstruction strategy to capture more fine-grained anatomical features, and 2) a dual-AE architecture with contrastive learning between the masked and original image views.
- Score: 10.40407976789742
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Existing Masked Image Modeling (MIM) depends on a spatial patch-based masking-reconstruction strategy to perceive objects'features from unlabeled images, which may face two limitations when applied to chest CT: 1) inefficient feature learning due to complex anatomical details presented in CT images, and 2) suboptimal knowledge transfer owing to input disparity between upstream and downstream models. To address these issues, we propose a new MIM method named Tissue-Contrastive Semi-Masked Autoencoder (TCS-MAE) for modeling chest CT images. Our method has two novel designs: 1) a tissue-based masking-reconstruction strategy to capture more fine-grained anatomical features, and 2) a dual-AE architecture with contrastive learning between the masked and original image views to bridge the gap of the upstream and downstream models. To validate our method, we systematically investigate representative contrastive, generative, and hybrid self-supervised learning methods on top of tasks involving segmenting pneumonia, mediastinal tumors, and various organs. The results demonstrate that, compared to existing methods, our TCS-MAE more effectively learns tissue-aware representations, thereby significantly enhancing segmentation performance across all tasks.
Related papers
- 2D-3D Deformable Image Registration of Histology Slide and Micro-CT with ML-based Initialization [2.1409936129568377]
Low image quality of soft tissue CT makes it difficult to correlate structures between histology slide and muCT.
We propose a novel 2D-3D multi-modal deformable image registration method.
arXiv Detail & Related papers (2024-10-18T09:51:43Z) - PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
We propose a semi-supervised learning framework, termed Progressive Mean Teachers (PMT), for medical image segmentation.
Our PMT generates high-fidelity pseudo labels by learning robust and diverse features in the training process.
Experimental results on two datasets with different modalities, i.e., CT and MRI, demonstrate that our method outperforms the state-of-the-art medical image segmentation approaches.
arXiv Detail & Related papers (2024-09-08T15:02:25Z) - AG-CRC: Anatomy-Guided Colorectal Cancer Segmentation in CT with
Imperfect Anatomical Knowledge [9.961742312147674]
We develop a novel Anatomy-Guided segmentation framework to exploit the auto-generated organ masks.
We extensively evaluate the proposed method on two CRC segmentation datasets.
arXiv Detail & Related papers (2023-10-07T03:22:06Z) - DEPAS: De-novo Pathology Semantic Masks using a Generative Model [0.0]
We introduce a scalable generative model, coined as DEPAS, that captures tissue structure and generates high-resolution semantic masks with state-of-the-art quality.
We demonstrate the ability of DEPAS to generate realistic semantic maps of tissue for three types of organs: skin, prostate, and lung.
arXiv Detail & Related papers (2023-02-13T16:48:33Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
We propose a novel Attentive Symmetric Auto-encoder based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics.
Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models.
arXiv Detail & Related papers (2022-09-19T09:43:19Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - LEARN++: Recurrent Dual-Domain Reconstruction Network for Compressed
Sensing CT [17.168584459606272]
The LEARN++ model integrates two parallel and interactiveworks to perform image restoration and sinogram inpainting operations on both the image and projection domains simultaneously.
Results show that the proposed LEARN++ model achieves competitive qualitative and quantitative results compared to several state-of-the-art methods in terms of both artifact reduction and detail preservation.
arXiv Detail & Related papers (2020-12-13T07:00:50Z) - Dual Convolutional Neural Networks for Breast Mass Segmentation and
Diagnosis in Mammography [18.979126709943085]
We introduce a novel deep learning framework for mammogram image processing, which computes mass segmentation and simultaneously predict diagnosis results.
Our method is constructed in a dual-path architecture that solves the mapping in a dual-problem manner.
Experimental results show that DualCoreNet achieves the best mammography segmentation and classification simultaneously, outperforming recent state-of-the-art models.
arXiv Detail & Related papers (2020-08-07T02:23:36Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.