(Nearly) Optimal Time-dependent Hamiltonian Simulation
- URL: http://arxiv.org/abs/2410.14366v2
- Date: Sun, 09 Mar 2025 13:30:19 GMT
- Title: (Nearly) Optimal Time-dependent Hamiltonian Simulation
- Authors: Nhat A. Nghiem,
- Abstract summary: We describe a simple quantum algorithm to simulate time-dependent Hamiltonian, extending the methodology of quantum signal processing.<n>The framework achieves optimal scaling up to some factor with respect to other parameters, and nearly optimal in inverse of error tolerance, which could be improved to optimal scaling under certain input models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We describe a simple quantum algorithm to simulate time-dependent Hamiltonian, extending the methodology of quantum signal processing. The framework achieves optimal scaling up to some factor with respect to other parameters, and nearly optimal in inverse of error tolerance, which could be improved to optimal scaling under certain input models. As applications, we discuss the problem of simulating generalized lattice system and time-periodic, or Floquet system, showing that our framework provides a neater yet highly efficient solution, achieving optimal/nearly optimal scaling in all parameters. In particular, our method also paves a new way for studying phase transition on quantum computer, extending the reach of quantum simulation.
Related papers
- Fast Expectation Value Calculation Speedup of Quantum Approximate Optimization Algorithm: HoLCUs QAOA [55.2480439325792]
We present a new method for calculating expectation values of operators that can be expressed as a linear combination of unitary (LCU) operators.
This method is general for any quantum algorithm and is of particular interest in the acceleration of variational quantum algorithms.
arXiv Detail & Related papers (2025-03-03T17:15:23Z) - Differentiable Quantum Computing for Large-scale Linear Control [26.118874431217165]
We introduce an end-to-end quantum algorithm for linear-quadratic control with provable speedups.
Our algorithm, based on a policy gradient method, incorporates a novel quantum subroutine for solving the matrix Lyapunov equation.
arXiv Detail & Related papers (2024-11-03T00:54:33Z) - Compact Multi-Threshold Quantum Information Driven Ansatz For Strongly Interactive Lattice Spin Models [0.0]
We introduce a systematic procedure for ansatz building based on approximate Quantum Mutual Information (QMI)
Our approach generates a layered-structured ansatz, where each layer's qubit pairs are selected based on their QMI values, resulting in more efficient state preparation and optimization routines.
Our results show that the Multi-QIDA method reduces the computational complexity while maintaining high precision, making it a promising tool for quantum simulations in lattice spin models.
arXiv Detail & Related papers (2024-08-05T17:07:08Z) - Parameter Generation of Quantum Approximate Optimization Algorithm with Diffusion Model [3.6959187484738902]
Quantum computing presents a prospect for revolutionizing the field of probabilistic optimization.
We present the Quantum Approximate Optimization Algorithm (QAOA), which is a hybrid quantum-classical algorithm.
We show that the diffusion model is capable of learning the distribution of high-performing parameters and then synthesizing new parameters closer to optimal ones.
arXiv Detail & Related papers (2024-07-17T01:18:27Z) - Probabilistic tensor optimization of quantum circuits for the
max-$k$-cut problem [0.0]
We propose a technique for optimizing parameterized circuits in variational quantum algorithms.
We illustrate our approach on the example of the quantum approximate optimization algorithm (QAOA) applied to the max-$k$-cut problem.
arXiv Detail & Related papers (2023-10-16T12:56:22Z) - Problem specific classical optimization of Hamiltonian simulation [1.602751335094621]
We present a classical pre-processing routine for variational Hamiltonian simulation.
We show that there always exists potential for optimization with respect to a Trotter sequence of the same order.
We find accuracy improvements of more than three orders of magnitude for our method as compared to Trotter sequences of the same gate number.
arXiv Detail & Related papers (2023-06-12T16:12:08Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Classically optimized Hamiltonian simulation [0.0]
Hamiltonian simulation is a promising application for quantum computers.
We show that, compared to Trotter product formulas, the classically optimized circuits can be orders of magnitude more accurate.
arXiv Detail & Related papers (2022-05-23T16:14:43Z) - Analog Quantum Approximate Optimization Algorithm [3.5558885788605332]
We present an analog version of the quantum approximate optimization algorithm suitable for current quantum annealers.
The central idea of this algorithm is to optimize the schedule function, which defines the adiabatic evolution.
It is achieved by choosing a suitable parametrization of the schedule function based on methods for a fixed time, with the potential to generate any function.
arXiv Detail & Related papers (2021-12-14T15:16:46Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
The famous least squares Monte Carlo (LSM) algorithm combines linear least square regression with Monte Carlo simulation to approximately solve problems in optimal stopping theory.
We propose a quantum LSM based on quantum access to a process, on quantum circuits for computing the optimal stopping times, and on quantum techniques for Monte Carlo.
arXiv Detail & Related papers (2021-11-30T12:21:41Z) - Hybridized Methods for Quantum Simulation in the Interaction Picture [69.02115180674885]
We provide a framework that allows different simulation methods to be hybridized and thereby improve performance for interaction picture simulations.
Physical applications of these hybridized methods yield a gate complexity scaling as $log2 Lambda$ in the electric cutoff.
For the general problem of Hamiltonian simulation subject to dynamical constraints, these methods yield a query complexity independent of the penalty parameter $lambda$ used to impose an energy cost.
arXiv Detail & Related papers (2021-09-07T20:01:22Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Efficient exploration of Hamiltonian parameter space for optimal control
of non-Markovian open quantum systems [0.0]
We present a general method to efficiently design optimal control sequences for non-Markovian open quantum systems.
We illustrate it by optimizing the shape of a laser pulse to prepare a quantum dot in a specific state.
arXiv Detail & Related papers (2021-01-08T16:02:31Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Measuring Analytic Gradients of General Quantum Evolution with the
Stochastic Parameter Shift Rule [0.0]
We study the problem of estimating the gradient of the function to be optimized directly from quantum measurements.
We derive a mathematically exact formula that provides an algorithm for estimating the gradient of any multi-qubit parametric quantum evolution.
Our algorithm continues to work, although with some approximations, even when all the available quantum gates are noisy.
arXiv Detail & Related papers (2020-05-20T18:24:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.