Differentiable Quantum Computing for Large-scale Linear Control
- URL: http://arxiv.org/abs/2411.01391v1
- Date: Sun, 03 Nov 2024 00:54:33 GMT
- Title: Differentiable Quantum Computing for Large-scale Linear Control
- Authors: Connor Clayton, Jiaqi Leng, Gengzhi Yang, Yi-Ling Qiao, Ming C. Lin, Xiaodi Wu,
- Abstract summary: We introduce an end-to-end quantum algorithm for linear-quadratic control with provable speedups.
Our algorithm, based on a policy gradient method, incorporates a novel quantum subroutine for solving the matrix Lyapunov equation.
- Score: 26.118874431217165
- License:
- Abstract: As industrial models and designs grow increasingly complex, the demand for optimal control of large-scale dynamical systems has significantly increased. However, traditional methods for optimal control incur significant overhead as problem dimensions grow. In this paper, we introduce an end-to-end quantum algorithm for linear-quadratic control with provable speedups. Our algorithm, based on a policy gradient method, incorporates a novel quantum subroutine for solving the matrix Lyapunov equation. Specifically, we build a quantum-assisted differentiable simulator for efficient gradient estimation that is more accurate and robust than classical methods relying on stochastic approximation. Compared to the classical approaches, our method achieves a super-quadratic speedup. To the best of our knowledge, this is the first end-to-end quantum application to linear control problems with provable quantum advantage.
Related papers
- Application of Langevin Dynamics to Advance the Quantum Natural Gradient Optimization Algorithm [47.47843839099175]
A Quantum Natural Gradient (QNG) algorithm for optimization of variational quantum circuits has been proposed recently.
In this study, we employ the Langevin equation with a QNG force to demonstrate that its discrete-time solution gives a generalized form, which we call Momentum-QNG.
arXiv Detail & Related papers (2024-09-03T15:21:16Z) - Integrating Quantum Algorithms Into Classical Frameworks: A Predictor-corrector Approach Using HHL [0.562479170374811]
We adapt a well-known algorithm for linear systems of equations, originally proposed by Harrow, Hassidim and Lloyd (HHL), by adapting it into a predictor-corrector instead of a direct solver.
This strategy enables the intelligent omission of computationally costly steps commonly found in many classical algorithms, while simultaneously mitigating the notorious readout problems associated with extracting a quantum state.
The versatility of the approach is illustrated through applications in various fields such as smoothed particle hydrodynamics, plasma simulations, and reactive flow configurations.
arXiv Detail & Related papers (2024-06-28T15:31:10Z) - Preconditioning for a Variational Quantum Linear Solver [0.0]
We numerically demonstrate a notable reduction in the required ansatz depth, demonstrating that preconditioning is useful for quantum algorithms.
Our findings suggest that combining classical computing techniques, such as preconditioning, with quantum algorithms can significantly enhance the performance of NISQ algorithms.
arXiv Detail & Related papers (2023-12-25T08:50:22Z) - QuACK: Accelerating Gradient-Based Quantum Optimization with Koopman Operator Learning [4.134992977596645]
We present Quantum-circuit Controlled Alternating Koopman learning (QuACK), a novel framework that leverages an alternating algorithm for efficient prediction of gradient dynamics on quantum computers.
We demonstrate QuACK's remarkable ability to accelerate gradient-based optimization across a range of applications in quantum optimization and machine learning.
arXiv Detail & Related papers (2022-11-02T17:59:25Z) - Surviving The Barren Plateau in Variational Quantum Circuits with
Bayesian Learning Initialization [0.0]
Variational quantum-classical hybrid algorithms are seen as a promising strategy for solving practical problems on quantum computers in the near term.
Here, we introduce the fast-and-slow algorithm, which uses gradients to identify a promising region in Bayesian space.
Our results move variational quantum algorithms closer to their envisioned applications in quantum chemistry, optimization, and quantum simulation problems.
arXiv Detail & Related papers (2022-03-04T17:48:57Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Direct Optimal Control Approach to Laser-Driven Quantum Particle
Dynamics [77.34726150561087]
We propose direct optimal control as a robust and flexible alternative to indirect control theory.
The method is illustrated for the case of laser-driven wavepacket dynamics in a bistable potential.
arXiv Detail & Related papers (2020-10-08T07:59:29Z) - Hybrid quantum variational algorithm for simulating open quantum systems
with near-term devices [0.0]
Hybrid quantum-classical (HQC) algorithms make it possible to use near-term quantum devices supported by classical computational resources.
We develop an HQC algorithm using an efficient variational optimization approach to simulate open system dynamics.
arXiv Detail & Related papers (2020-08-12T13:49:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.