論文の概要: Investigating the Capabilities of Deep Learning for Processing and Interpreting One-Shot Multi-offset GPR Data: A Numerical Case Study for Lunar and Martian Environments
- arxiv url: http://arxiv.org/abs/2410.14386v1
- Date: Fri, 18 Oct 2024 11:38:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:23:55.175029
- Title: Investigating the Capabilities of Deep Learning for Processing and Interpreting One-Shot Multi-offset GPR Data: A Numerical Case Study for Lunar and Martian Environments
- Title(参考訳): ワンショットマルチオフセットGPRデータの処理・解釈における深層学習能力の検討:月・火星環境の数値ケーススタディ
- Authors: Iraklis Giannakis, Craig Warren, Antonios Giannopoulos, Georgios Leontidis, Yan Su, Feng Zhou, Javier Martin-Torres, Nectaria Diamanti,
- Abstract要約: 地中レーダー(GPR)は、過去10年間に惑星科学で人気を博してきた、成熟した物理手法である。
GPRはルナーと火星のミッションの両方に使われ、地球外惑星の表面地質に関する重要な情報を提供している。
本稿では,GPRデータの解釈・処理におけるディープラーニングの可能性について検討する。
- 参考スコア(独自算出の注目度): 9.150932930653921
- License:
- Abstract: Ground-penetrating radar (GPR) is a mature geophysical method that has gained increasing popularity in planetary science over the past decade. GPR has been utilised both for Lunar and Martian missions providing pivotal information regarding the near surface geology of Terrestrial planets. Within that context, numerous processing pipelines have been suggested to address the unique challenges present in planetary setups. These processing pipelines often require manual tuning resulting to ambiguous outputs open to non-unique interpretations. These pitfalls combined with the large number of planetary GPR data (kilometers in magnitude), highlight the necessity for automatic, objective and advanced processing and interpretation schemes. The current paper investigates the potential of deep learning for interpreting and processing GPR data. The one-shot multi-offset configuration is investigated via a coherent numerical case study, showcasing the potential of deep learning for A) reconstructing the dielectric distribution of the the near surface of Terrestrial planets, and B) filling missing or bad-quality traces. Special care was taken for the numerical data to be both realistic and challenging. Moreover, the generated synthetic data are properly labelled and made publicly available for training future data-driven pipelines and contributing towards developing pre-trained foundation models for GPR.
- Abstract(参考訳): 地中レーダー(GPR)は、過去10年間に惑星科学で人気を博してきた、成熟した物理手法である。
GPRはルナーと火星のミッションの両方に使われ、地球外惑星の表面地質に関する重要な情報を提供している。
このような状況下では、多くの処理パイプラインが惑星のセットアップに存在するユニークな課題に対処するために提案されている。
これらの処理パイプラインは手動のチューニングを必要とすることが多く、非特異な解釈に開放されるあいまいな出力をもたらす。
これらの落とし穴は、多数の惑星GPRデータ(マグニチュードのキロメートル)と組み合わされ、自動的、客観的で高度な処理と解釈のスキームの必要性を強調している。
本稿では,GPRデータの解釈・処理におけるディープラーニングの可能性について検討する。
1ショットのマルチオフセット構成は、コヒーレントな数値ケーススタディにより検討され、A)地球外惑星表面近傍の誘電率分布を再構成する深層学習の可能性を示し、B) 不足または不品質な痕跡を埋める。
数値データが現実的かつ困難であることには特別な注意が払われた。
さらに、生成された合成データは適切にラベル付けされ、将来のデータ駆動パイプラインをトレーニングするために公開され、GPRのための事前訓練された基礎モデルの開発に貢献する。
関連論文リスト
- Multiple Random Masking Autoencoder Ensembles for Robust Multimodal
Semi-supervised Learning [64.81450582542878]
コンピュータビジョンや機械学習には、現実の問題が増えている。
衛星データから地球観測を行う場合、一つの観測層を予測できることが重要である。
論文 参考訳(メタデータ) (2024-02-12T20:08:58Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
センサーは、特に南極のような遠隔地において、その測定の情報量が最大になるように配置することは困難である。
確率論的機械学習モデルは、予測の不確実性を最大限に低減するサイトを見つけることによって、情報的センサ配置を提案することができる。
本稿では,これらの問題に対処するために,畳み込み型ガウスニューラルプロセス(ConvGNP)を提案する。
論文 参考訳(メタデータ) (2022-11-18T17:25:14Z) - Earthformer: Exploring Space-Time Transformers for Earth System
Forecasting [27.60569643222878]
本研究では,地球系予測のための時空間変圧器である地球変圧器を提案する。
Transformerは、Cuboid Attentionという、汎用的で柔軟で効率的な時空アテンションブロックに基づいている。
降水量計に関する2つの実世界のベンチマークとエルニーノ/サウス・テンポシエーションの実験は、アースフォーマーが最先端のパフォーマンスを達成したことを示している。
論文 参考訳(メタデータ) (2022-07-12T20:52:26Z) - Data-Efficient Learning via Minimizing Hyperspherical Energy [48.47217827782576]
本稿では,少数の代表データを用いたスクラッチからのデータ効率学習の問題について考察する。
我々は,MHEに基づくアクティブラーニング(MHEAL)アルゴリズムを提案し,MHEALの包括的な理論的保証を提供する。
論文 参考訳(メタデータ) (2022-06-30T11:39:12Z) - Guided deep learning by subaperture decomposition: ocean patterns from
SAR imagery [36.922471841100176]
センチネル1 SAR 波動モードのヴィグネットは、2014年以来、多くの重要な海洋現象や大気現象を捉えてきた。
本研究では,SAR深層学習モデルの事前処理段階としてサブアパーチャ分解を適用することを提案する。
論文 参考訳(メタデータ) (2022-04-09T09:49:05Z) - Embedding Earth: Self-supervised contrastive pre-training for dense land
cover classification [61.44538721707377]
本研究では,衛星画像の高可用性を活用するための自己監督型コントラスト事前学習法として,エンベディングアースを提案する。
提案手法による事前学習では, 25%の絶対mIoUが得られた。
学習した特徴は、異なる領域間で一般化され、提案した事前学習スキームの可能性を開放する。
論文 参考訳(メタデータ) (2022-03-11T16:14:14Z) - Deep residential representations: Using unsupervised learning to unlock
elevation data for geo-demographic prediction [0.0]
LiDAR技術は、都市景観と農村景観の詳細な3次元標高マップを提供するために利用することができる。
現在まで、空中LiDAR画像は、主に環境と考古学の領域に限られている。
我々は、このデータの適合性は、独自のだけでなく、人口統計学的特徴と組み合わせたデータの源でもあると考え、埋め込みの現実的なユースケースを提供する。
論文 参考訳(メタデータ) (2021-12-02T17:10:52Z) - Deep learning for prediction of complex geology ahead of drilling [0.0]
意思決定支援システムは、大量のデータと解釈の複雑さに対処するのに役立つ。
彼らはリアルタイム測定を確率的地球モデルに同化し、最新のモデルを使って意思決定の推奨を行うことができる。
本稿では,ジオステアリング決定支援フレームワークに2つのML手法を導入する。
論文 参考訳(メタデータ) (2021-04-06T14:42:33Z) - A review of machine learning in processing remote sensing data for
mineral exploration [0.41998444721319217]
本稿では,最近確立したリモートセンシングデータ処理のための機械学習手法の実装と適応について概説する。
異なる鉱床の探査への応用について研究している。
論文 参考訳(メタデータ) (2021-03-13T10:36:25Z) - Surface Warping Incorporating Machine Learning Assisted Domain
Likelihood Estimation: A New Paradigm in Mine Geology Modelling and
Automation [68.8204255655161]
新たに取得した破砕孔データによって課される地球化学的および空間的制約に基づいて, モデル表面を再構成するバイーシアンワープ法が提案されている。
本稿では,このワーピングフレームワークに機械学習を組み込むことにより,可能性の一般化を図る。
その基礎は、p(g|c) が p(y(c)|g と似た役割を果たすような地質領域の確率のベイズ計算によって構成される。
論文 参考訳(メタデータ) (2021-02-15T10:37:52Z) - Learning Structures in Earth Observation Data with Gaussian Processes [67.27044745471207]
本稿では,この分野の主要な理論gp開発について概説する。
信号特性と雑音特性を尊重し、特徴ランキングを自動的に提供し、関連する不確かさ区間を適用可能にする新しいアルゴリズムについて論じる。
論文 参考訳(メタデータ) (2020-12-22T10:46:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。