Investigating the Capabilities of Deep Learning for Processing and Interpreting One-Shot Multi-offset GPR Data: A Numerical Case Study for Lunar and Martian Environments
- URL: http://arxiv.org/abs/2410.14386v1
- Date: Fri, 18 Oct 2024 11:38:29 GMT
- Title: Investigating the Capabilities of Deep Learning for Processing and Interpreting One-Shot Multi-offset GPR Data: A Numerical Case Study for Lunar and Martian Environments
- Authors: Iraklis Giannakis, Craig Warren, Antonios Giannopoulos, Georgios Leontidis, Yan Su, Feng Zhou, Javier Martin-Torres, Nectaria Diamanti,
- Abstract summary: Ground-penetrating radar (GPR) is a mature geophysical method that has gained increasing popularity in planetary science over the past decade.
GPR has been utilised both for Lunar and Martian missions providing pivotal information regarding the near surface geology of Terrestrial planets.
This paper investigates the potential of deep learning for interpreting and processing GPR data.
- Score: 9.150932930653921
- License:
- Abstract: Ground-penetrating radar (GPR) is a mature geophysical method that has gained increasing popularity in planetary science over the past decade. GPR has been utilised both for Lunar and Martian missions providing pivotal information regarding the near surface geology of Terrestrial planets. Within that context, numerous processing pipelines have been suggested to address the unique challenges present in planetary setups. These processing pipelines often require manual tuning resulting to ambiguous outputs open to non-unique interpretations. These pitfalls combined with the large number of planetary GPR data (kilometers in magnitude), highlight the necessity for automatic, objective and advanced processing and interpretation schemes. The current paper investigates the potential of deep learning for interpreting and processing GPR data. The one-shot multi-offset configuration is investigated via a coherent numerical case study, showcasing the potential of deep learning for A) reconstructing the dielectric distribution of the the near surface of Terrestrial planets, and B) filling missing or bad-quality traces. Special care was taken for the numerical data to be both realistic and challenging. Moreover, the generated synthetic data are properly labelled and made publicly available for training future data-driven pipelines and contributing towards developing pre-trained foundation models for GPR.
Related papers
- Multiple Random Masking Autoencoder Ensembles for Robust Multimodal
Semi-supervised Learning [64.81450582542878]
There is an increasing number of real-world problems in computer vision and machine learning.
In the case of Earth Observations from satellite data, it is important to be able to predict one observation layer.
arXiv Detail & Related papers (2024-02-12T20:08:58Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
It is challenging to place sensors in a way that maximises the informativeness of their measurements, particularly in remote regions like Antarctica.
Probabilistic machine learning models can suggest informative sensor placements by finding sites that maximally reduce prediction uncertainty.
This paper proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues.
arXiv Detail & Related papers (2022-11-18T17:25:14Z) - Earthformer: Exploring Space-Time Transformers for Earth System
Forecasting [27.60569643222878]
We propose Earthformer, a space-time Transformer for Earth system forecasting.
The Transformer is based on a generic, flexible and efficient space-time attention block, named Cuboid Attention.
Experiments on two real-world benchmarks about precipitation nowcasting and El Nino/Southerntemporaltion show Earthformer achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-07-12T20:52:26Z) - Data-Efficient Learning via Minimizing Hyperspherical Energy [48.47217827782576]
This paper considers the problem of data-efficient learning from scratch using a small amount of representative data.
We propose a MHE-based active learning (MHEAL) algorithm, and provide comprehensive theoretical guarantees for MHEAL.
arXiv Detail & Related papers (2022-06-30T11:39:12Z) - Guided deep learning by subaperture decomposition: ocean patterns from
SAR imagery [36.922471841100176]
Sentinel 1 SAR wave mode vignettes have made possible to capture many important oceanic and atmospheric phenomena since 2014.
In this study, we propose to apply subaperture decomposition as a preprocessing stage for SAR deep learning models.
arXiv Detail & Related papers (2022-04-09T09:49:05Z) - Embedding Earth: Self-supervised contrastive pre-training for dense land
cover classification [61.44538721707377]
We present Embedding Earth a self-supervised contrastive pre-training method for leveraging the large availability of satellite imagery.
We observe significant improvements up to 25% absolute mIoU when pre-trained with our proposed method.
We find that learnt features can generalize between disparate regions opening up the possibility of using the proposed pre-training scheme.
arXiv Detail & Related papers (2022-03-11T16:14:14Z) - Deep residential representations: Using unsupervised learning to unlock
elevation data for geo-demographic prediction [0.0]
LiDAR technology can be used to provide detailed three-dimensional elevation maps of urban and rural landscapes.
To date, airborne LiDAR imaging has been predominantly confined to the environmental and archaeological domains.
We consider the suitability of this data not just on its own but also as a source of data in combination with demographic features, thus providing a realistic use case for the embeddings.
arXiv Detail & Related papers (2021-12-02T17:10:52Z) - Deep learning for prediction of complex geology ahead of drilling [0.0]
Decision support systems can help cope with high volumes of data and interpretation complexities.
They can assimilate the real-time measurements into a probabilistic earth model and use the updated model for decision recommendations.
In this paper, we introduce two ML techniques into the geosteering decision support framework.
arXiv Detail & Related papers (2021-04-06T14:42:33Z) - A review of machine learning in processing remote sensing data for
mineral exploration [0.41998444721319217]
This paper reviews the implementation and adaptation of some popular and recently established machine learning methods for remote sensing data processing.
It investigates their applications for exploring different ore deposits.
arXiv Detail & Related papers (2021-03-13T10:36:25Z) - Surface Warping Incorporating Machine Learning Assisted Domain
Likelihood Estimation: A New Paradigm in Mine Geology Modelling and
Automation [68.8204255655161]
A Bayesian warping technique has been proposed to reshape modeled surfaces based on geochemical and spatial constraints imposed by newly acquired blasthole data.
This paper focuses on incorporating machine learning in this warping framework to make the likelihood generalizable.
Its foundation is laid by a Bayesian computation in which the geological domain likelihood given the chemistry, p(g|c) plays a similar role to p(y(c)|g.
arXiv Detail & Related papers (2021-02-15T10:37:52Z) - Learning Structures in Earth Observation Data with Gaussian Processes [67.27044745471207]
This paper reviews the main theoretical GP developments in the field.
New algorithms that respect the signal and noise characteristics, that provide feature rankings automatically, and that allow applicability of associated uncertainty intervals are discussed.
arXiv Detail & Related papers (2020-12-22T10:46:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.