Parameter-Efficient Adaptation of Geospatial Foundation Models through Embedding Deflection
- URL: http://arxiv.org/abs/2503.09493v1
- Date: Wed, 12 Mar 2025 15:53:58 GMT
- Title: Parameter-Efficient Adaptation of Geospatial Foundation Models through Embedding Deflection
- Authors: Romain Thoreau, Valerio Marsocci, Dawa Derksen,
- Abstract summary: DEFLECT is a novel strategy for adapting GFMs to multispectral satellite imagery with very few additional parameters.<n>It achieves on-par or higher accuracy with 5-10$times$ fewer parameters for classification and segmentation tasks.
- Score: 2.8220015774219567
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As large-scale heterogeneous data sets become increasingly available, adapting foundation models at low cost has become a key issue. Seminal works in natural language processing, e.g. Low-Rank Adaptation (LoRA), leverage the low "intrinsic rank" of parameter updates during adaptation. In this paper, we argue that incorporating stronger inductive biases in both data and models can enhance the adaptation of Geospatial Foundation Models (GFMs), pretrained on RGB satellite images, to other types of optical satellite data. Specifically, the pretrained parameters of GFMs serve as a strong prior for the spatial structure of multispectral images. For this reason, we introduce DEFLECT (Deflecting Embeddings for Finetuning Latent representations for Earth and Climate Tasks), a novel strategy for adapting GFMs to multispectral satellite imagery with very few additional parameters. DEFLECT improves the representation capabilities of the extracted features, particularly enhancing spectral information, which is essential for geoscience and environmental-related tasks. We demonstrate the effectiveness of our method across three different GFMs and five diverse datasets, ranging from forest monitoring to marine environment segmentation. Compared to competing methods, DEFLECT achieves on-par or higher accuracy with 5-10$\times$ fewer parameters for classification and segmentation tasks. The code will be made publicly available.
Related papers
- Instruction-Guided Autoregressive Neural Network Parameter Generation [49.800239140036496]
We propose IGPG, an autoregressive framework that unifies parameter synthesis across diverse tasks and architectures.
By autoregressively generating neural network weights' tokens, IGPG ensures inter-layer coherence and enables efficient adaptation across models and datasets.
Experiments on multiple datasets demonstrate that IGPG consolidates diverse pretrained models into a single, flexible generative framework.
arXiv Detail & Related papers (2025-04-02T05:50:19Z) - PCE-GAN: A Generative Adversarial Network for Point Cloud Attribute Quality Enhancement based on Optimal Transport [56.56430888985025]
We propose a generative adversarial network for point cloud quality enhancement (PCE-GAN)
The generator consists of a local feature extraction (LFE) unit, a global spatial correlation (GSC) unit and a feature squeeze unit.
The discriminator computes the deviation between the probability distributions of the enhanced point cloud and the original point cloud, guiding the generator to achieve high quality reconstruction.
arXiv Detail & Related papers (2025-02-26T07:34:33Z) - No Location Left Behind: Measuring and Improving the Fairness of Implicit Representations for Earth Data [13.412573082645096]
Implicit neural representations (INRs) exhibit growing promise in addressing Earth representation challenges.<n>Existing methods disproportionately prioritize global average performance.<n>We introduce FAIR-Earth: a first-of-its-kind dataset to examine and challenge inequities in Earth representations.
arXiv Detail & Related papers (2025-02-05T16:51:13Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
We explore the potential of generative image diffusion to address the scarcity of annotated data in earth observation tasks.
To the best of our knowledge, we are the first to generate both images and corresponding masks for satellite segmentation.
arXiv Detail & Related papers (2024-03-25T10:30:22Z) - Few-shot Image Generation via Information Transfer from the Built
Geodesic Surface [2.617962830559083]
We propose a method called Information Transfer from the Built Geodesic Surface (ITBGS)
With the FAGS module, a pseudo-source domain is created by projecting image features from the training dataset into the Pre-Shape Space.
We demonstrate that the proposed method consistently achieves optimal or comparable results across a diverse range of semantically distinct datasets.
arXiv Detail & Related papers (2024-01-03T13:57:09Z) - A Parameterized Generative Adversarial Network Using Cyclic Projection
for Explainable Medical Image Classification [17.26012062961371]
ParaGAN is a parameterized GAN that effectively controls the changes of synthetic samples among domains and highlights the attention regions for downstream classification.
Our experiments show that ParaGAN can consistently outperform the existing augmentation methods with explainable classification on two small-scale medical datasets.
arXiv Detail & Related papers (2023-11-24T10:07:14Z) - SatDM: Synthesizing Realistic Satellite Image with Semantic Layout
Conditioning using Diffusion Models [0.0]
Denoising Diffusion Probabilistic Models (DDPMs) have demonstrated significant promise in synthesizing realistic images from semantic layouts.
In this paper, a conditional DDPM model capable of taking a semantic map and generating high-quality, diverse, and correspondingly accurate satellite images is implemented.
The effectiveness of our proposed model is validated using a meticulously labeled dataset introduced within the context of this study.
arXiv Detail & Related papers (2023-09-28T19:39:13Z) - GIFD: A Generative Gradient Inversion Method with Feature Domain
Optimization [52.55628139825667]
Federated Learning (FL) has emerged as a promising distributed machine learning framework to preserve clients' privacy.
Recent studies find that an attacker can invert the shared gradients and recover sensitive data against an FL system by leveraging pre-trained generative adversarial networks (GAN) as prior knowledge.
We propose textbfGradient textbfInversion over textbfFeature textbfDomains (GIFD), which disassembles the GAN model and searches the feature domains of the intermediate layers.
arXiv Detail & Related papers (2023-08-09T04:34:21Z) - SSL-SoilNet: A Hybrid Transformer-based Framework with Self-Supervised Learning for Large-scale Soil Organic Carbon Prediction [2.554658234030785]
This study introduces a novel approach that aims to learn the geographical link between multimodal features via self-supervised contrastive learning.
The proposed approach has undergone rigorous testing on two distinct large-scale datasets.
arXiv Detail & Related papers (2023-08-07T13:44:44Z) - One-for-All: Generalized LoRA for Parameter-Efficient Fine-tuning [34.109808214968176]
Generalized LoRA (GLoRA) is an advanced approach for universal parameter-efficient fine-tuning tasks.
It employs a generalized prompt module to optimize pre-trained model weights and adjust intermediate activations.
GLoRA exhibits strong transfer learning, few-shot learning and domain generalization abilities.
arXiv Detail & Related papers (2023-06-13T17:59:32Z) - Understanding Overparameterization in Generative Adversarial Networks [56.57403335510056]
Generative Adversarial Networks (GANs) are used to train non- concave mini-max optimization problems.
A theory has shown the importance of the gradient descent (GD) to globally optimal solutions.
We show that in an overized GAN with a $1$-layer neural network generator and a linear discriminator, the GDA converges to a global saddle point of the underlying non- concave min-max problem.
arXiv Detail & Related papers (2021-04-12T16:23:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.