Dynamic Negative Guidance of Diffusion Models
- URL: http://arxiv.org/abs/2410.14398v1
- Date: Fri, 18 Oct 2024 12:02:21 GMT
- Title: Dynamic Negative Guidance of Diffusion Models
- Authors: Felix Koulischer, Johannes Deleu, Gabriel Raya, Thomas Demeester, Luca Ambrogioni,
- Abstract summary: We show that Negative Prompting (NP) is limited by the assumption of a constant guidance scale.
We derive a principled technique called Dynamic Negative Guidance, which relies on a near-optimal time and state dependent modulation of the guidance.
We show that it is possible to use DNG with Stable Diffusion to obtain more accurate and less invasive guidance than NP.
- Score: 13.873685216429868
- License:
- Abstract: Negative Prompting (NP) is widely utilized in diffusion models, particularly in text-to-image applications, to prevent the generation of undesired features. In this paper, we show that conventional NP is limited by the assumption of a constant guidance scale, which may lead to highly suboptimal results, or even complete failure, due to the non-stationarity and state-dependence of the reverse process. Based on this analysis, we derive a principled technique called Dynamic Negative Guidance, which relies on a near-optimal time and state dependent modulation of the guidance without requiring additional training. Unlike NP, negative guidance requires estimating the posterior class probability during the denoising process, which is achieved with limited additional computational overhead by tracking the discrete Markov Chain during the generative process. We evaluate the performance of DNG class-removal on MNIST and CIFAR10, where we show that DNG leads to higher safety, preservation of class balance and image quality when compared with baseline methods. Furthermore, we show that it is possible to use DNG with Stable Diffusion to obtain more accurate and less invasive guidance than NP.
Related papers
- Observation-Guided Diffusion Probabilistic Models [41.749374023639156]
We propose a novel diffusion-based image generation method called the observation-guided diffusion probabilistic model (OGDM)
Our approach reestablishes the training objective by integrating the guidance of the observation process with the Markov chain.
We demonstrate the effectiveness of our training algorithm using diverse inference techniques on strong diffusion model baselines.
arXiv Detail & Related papers (2023-10-06T06:29:06Z) - Effective Learning with Node Perturbation in Multi-Layer Neural Networks [2.1168858935852013]
node perturbation (NP) proposes learning by the injection of noise into network activations.
NP is highly data inefficient and unstable due to its unguided noise-based search process.
We find that a closer alignment with directional derivatives together with input decorrelation at every layer strongly enhances performance of NP learning.
arXiv Detail & Related papers (2023-10-02T08:12:51Z) - Regularizing with Pseudo-Negatives for Continual Self-Supervised Learning [62.40718385934608]
We introduce a novel Pseudo-Negative Regularization (PNR) framework for effective continual self-supervised learning (CSSL)
Our PNR leverages pseudo-negatives obtained through model-based augmentation in a way that newly learned representations may not contradict what has been learned in the past.
arXiv Detail & Related papers (2023-06-08T10:59:35Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
We show that when the data distribution is well-separated, DNNs can achieve Bayes-optimal test error for classification.
Our results indicate that interpolating with smoother functions leads to better generalization.
arXiv Detail & Related papers (2023-05-30T19:37:44Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - Adversarially Contrastive Estimation of Conditional Neural Processes [39.77675002999259]
Conditional Neural Processes(CNPs) formulate distributions over functions and generate function observations with exact conditional likelihoods.
We propose calibrating CNPs with an adversarial training scheme besides regular maximum likelihood estimates.
From generative function reconstruction to downstream regression and classification tasks, we demonstrate that our method fits mainstream CNP members.
arXiv Detail & Related papers (2023-03-23T02:58:14Z) - Attentive Contractive Flow with Lipschitz-constrained Self-Attention [25.84621883831624]
We introduce a novel approach called Attentive Contractive Flow (ACF)
ACF utilizes a special category of flow-based generative models - contractive flows.
We demonstrate that ACF can be introduced into a variety of state of the art flow models in a plug-and-play manner.
arXiv Detail & Related papers (2021-09-24T18:02:49Z) - Positive-Negative Momentum: Manipulating Stochastic Gradient Noise to
Improve Generalization [89.7882166459412]
gradient noise (SGN) acts as implicit regularization for deep learning.
Some works attempted to artificially simulate SGN by injecting random noise to improve deep learning.
For simulating SGN at low computational costs and without changing the learning rate or batch size, we propose the Positive-Negative Momentum (PNM) approach.
arXiv Detail & Related papers (2021-03-31T16:08:06Z) - Neural ODE Processes [64.10282200111983]
We introduce Neural ODE Processes (NDPs), a new class of processes determined by a distribution over Neural ODEs.
We show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points.
arXiv Detail & Related papers (2021-03-23T09:32:06Z) - Noisy Recurrent Neural Networks [45.94390701863504]
We study recurrent neural networks (RNNs) trained by injecting noise into hidden states as discretizations of differential equations driven by input data.
We find that, under reasonable assumptions, this implicit regularization promotes flatter minima; it biases towards models with more stable dynamics; and, in classification tasks, it favors models with larger classification margin.
Our theory is supported by empirical results which demonstrate improved robustness with respect to various input perturbations, while maintaining state-of-the-art performance.
arXiv Detail & Related papers (2021-02-09T15:20:50Z) - Chance-Constrained Control with Lexicographic Deep Reinforcement
Learning [77.34726150561087]
This paper proposes a lexicographic Deep Reinforcement Learning (DeepRL)-based approach to chance-constrained Markov Decision Processes.
A lexicographic version of the well-known DeepRL algorithm DQN is also proposed and validated via simulations.
arXiv Detail & Related papers (2020-10-19T13:09:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.