Multi-Agent Reinforcement Learning for Power Control in Wireless
Networks via Adaptive Graphs
- URL: http://arxiv.org/abs/2311.15858v1
- Date: Mon, 27 Nov 2023 14:25:40 GMT
- Title: Multi-Agent Reinforcement Learning for Power Control in Wireless
Networks via Adaptive Graphs
- Authors: Lorenzo Mario Amorosa, Marco Skocaj, Roberto Verdone, and Deniz
G\"und\"uz
- Abstract summary: Multi-agent deep reinforcement learning (MADRL) has emerged as a promising method to address a wide range of complex optimization problems like power control.
We present the use of graphs as communication-inducing structures among distributed agents as an effective means to mitigate these challenges.
- Score: 1.1861167902268832
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The ever-increasing demand for high-quality and heterogeneous wireless
communication services has driven extensive research on dynamic optimization
strategies in wireless networks. Among several possible approaches, multi-agent
deep reinforcement learning (MADRL) has emerged as a promising method to
address a wide range of complex optimization problems like power control.
However, the seamless application of MADRL to a variety of network optimization
problems faces several challenges related to convergence. In this paper, we
present the use of graphs as communication-inducing structures among
distributed agents as an effective means to mitigate these challenges.
Specifically, we harness graph neural networks (GNNs) as neural architectures
for policy parameterization to introduce a relational inductive bias in the
collective decision-making process. Most importantly, we focus on modeling the
dynamic interactions among sets of neighboring agents through the introduction
of innovative methods for defining a graph-induced framework for integrated
communication and learning. Finally, the superior generalization capabilities
of the proposed methodology to larger networks and to networks with different
user categories is verified through simulations.
Related papers
- AI Flow at the Network Edge [58.31090055138711]
AI Flow is a framework that streamlines the inference process by jointly leveraging the heterogeneous resources available across devices, edge nodes, and cloud servers.
This article serves as a position paper for identifying the motivation, challenges, and principles of AI Flow.
arXiv Detail & Related papers (2024-11-19T12:51:17Z) - DRL Optimization Trajectory Generation via Wireless Network Intent-Guided Diffusion Models for Optimizing Resource Allocation [58.62766376631344]
We propose a customized wireless network intent (WNI-G) model to address different state variations of wireless communication networks.
Extensive simulation achieves greater stability in spectral efficiency and variations of traditional DRL models in dynamic communication systems.
arXiv Detail & Related papers (2024-10-18T14:04:38Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.
Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - Multi Agent DeepRL based Joint Power and Subchannel Allocation in IAB
networks [0.0]
Integrated Access and Backhauling (IRL) is a viable approach for meeting the unprecedented need for higher data rates of future generations.
In this paper, we show how we can use Deep Q-Learning Network to handle problems with huge action spaces associated with fractional nodes.
arXiv Detail & Related papers (2023-08-31T21:30:25Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
The scale of mobile networks makes it challenging to optimize antenna parameters using manual intervention or hand-engineered strategies.
We propose a new multi-agent reinforcement learning algorithm to optimize mobile network configurations globally.
We empirically demonstrate the performance of the algorithm on an antenna tilt tuning problem and a joint tilt and power control problem in a simulated environment.
arXiv Detail & Related papers (2023-01-20T17:06:34Z) - Hierarchical Multi-Agent DRL-Based Framework for Joint Multi-RAT
Assignment and Dynamic Resource Allocation in Next-Generation HetNets [21.637440368520487]
This paper considers the problem of cost-aware downlink sum-rate via joint optimal radio access technologies (RATs) assignment and power allocation in next-generation wireless networks (HetNets)
We propose a hierarchical multi-agent deep reinforcement learning (DRL) framework, called DeepRAT, to solve it efficiently and learn system dynamics.
In particular, the DeepRAT framework decomposes the problem into two main stages; the RATs-EDs assignment stage, which implements a single-agent Deep Q Network algorithm, and the power allocation stage, which utilizes a multi-agent Deep Deterministic Policy Gradient
arXiv Detail & Related papers (2022-02-28T09:49:44Z) - Graph-based Algorithm Unfolding for Energy-aware Power Allocation in
Wireless Networks [27.600081147252155]
We develop a novel graph sumable framework to maximize energy efficiency in wireless communication networks.
We show the permutation training which is a desirable property for models of wireless network data.
Results demonstrate its generalizability across different network topologies.
arXiv Detail & Related papers (2022-01-27T20:23:24Z) - Packet Routing with Graph Attention Multi-agent Reinforcement Learning [4.78921052969006]
We develop a model-free and data-driven routing strategy by leveraging reinforcement learning (RL)
Considering the graph nature of the network topology, we design a multi-agent RL framework in combination with Graph Neural Network (GNN)
arXiv Detail & Related papers (2021-07-28T06:20:34Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
This paper presents a machine learning strategy that tackles a distributed optimization task in a wireless network with an arbitrary number of randomly interconnected nodes.
We develop a flexible deep neural network formalism termed distributed message-passing neural network (DMPNN) with forward and backward computations independent of the network topology.
arXiv Detail & Related papers (2021-06-15T09:03:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.