論文の概要: DRACO-DehazeNet: An Efficient Image Dehazing Network Combining Detail Recovery and a Novel Contrastive Learning Paradigm
- arxiv url: http://arxiv.org/abs/2410.14595v1
- Date: Fri, 18 Oct 2024 16:48:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:25:08.155797
- Title: DRACO-DehazeNet: An Efficient Image Dehazing Network Combining Detail Recovery and a Novel Contrastive Learning Paradigm
- Title(参考訳): DRACO-DehazeNet: ディテールリカバリと新しいコントラスト学習パラダイムを組み合わせた効率的な画像デハジングネットワーク
- Authors: Gao Yu Lee, Tanmoy Dam, Md Meftahul Ferdaus, Daniel Puiu Poenar, Vu Duong,
- Abstract要約: Detail RecoveryとContrastive DehazeNetは、特定のデハズされたシーンコンテキストへの拡張を調整した、詳細なイメージリカバリネットワークである。
大きな革新は、新しい四重項損失に基づくコントラストデハージングパラダイムによって達成された、限られたデータで効果的にトレーニングできることである。
- 参考スコア(独自算出の注目度): 3.649619954898362
- License:
- Abstract: Image dehazing is crucial for clarifying images obscured by haze or fog, but current learning-based approaches is dependent on large volumes of training data and hence consumed significant computational power. Additionally, their performance is often inadequate under non-uniform or heavy haze. To address these challenges, we developed the Detail Recovery And Contrastive DehazeNet, which facilitates efficient and effective dehazing via a dense dilated inverted residual block and an attention-based detail recovery network that tailors enhancements to specific dehazed scene contexts. A major innovation is its ability to train effectively with limited data, achieved through a novel quadruplet loss-based contrastive dehazing paradigm. This approach distinctly separates hazy and clear image features while also distinguish lower-quality and higher-quality dehazed images obtained from each sub-modules of our network, thereby refining the dehazing process to a larger extent. Extensive tests on a variety of benchmarked haze datasets demonstrated the superiority of our approach. The code repository for this work will be available soon.
- Abstract(参考訳): 画像のデハジングは、迷路や霧によって隠されたイメージを明らかにするために重要であるが、現在の学習ベースのアプローチは、大量のトレーニングデータに依存しており、結果としてかなりの計算パワーを消費している。
また、その演奏は、一様でないものや重いものなどでは不十分であることが多い。
これらの課題に対処するため,Detail Recovery and Contrastive DehazeNetを開発した。Detail Recovery and Contrastive DehazeNetは,高密度に拡張された逆残ブロックと,特定のデハズされたシーンコンテキストへの拡張を調整した注意に基づく詳細回復ネットワークである。
大きな革新は、新しい四重項損失に基づくコントラストデハージングパラダイムによって達成された、限られたデータで効果的にトレーニングできることである。
提案手法では,ネットワークの各サブモジュールから得られる低品質かつ高品質なデハズド画像を識別し,デハズ処理をより広範囲に精錬する。
様々なベンチマークされたヘイズデータセットの大規模なテストは、我々のアプローチの優位性を実証した。
この作業のコードリポジトリは近く公開される予定だ。
関連論文リスト
- WTCL-Dehaze: Rethinking Real-world Image Dehazing via Wavelet Transform and Contrastive Learning [17.129068060454255]
自律運転や監視といったアプリケーションには、単一イメージのデハジングが不可欠だ。
コントラスト損失と離散ウェーブレット変換を統合した半教師付きデハージングネットワークを提案する。
提案アルゴリズムは,最先端の単一画像復調法と比較して,優れた性能とロバスト性を実現している。
論文 参考訳(メタデータ) (2024-10-07T05:36:11Z) - PriorNet: A Novel Lightweight Network with Multidimensional Interactive Attention for Efficient Image Dehazing [8.837086917206525]
ヘイズ画像は視覚的品質を低下させ、デハジングはその後の処理タスクにとって重要な前提条件である。
本稿では,新鮮で軽量で適応性の高いデハジングネットワークであるPresiderNetを紹介する。
PriorNetのコアは、多次元インタラクティブアテンション(MIA)機構で、様々なヘイズ特性を効果的に捉えている。
論文 参考訳(メタデータ) (2024-04-24T04:20:22Z) - Masking Improves Contrastive Self-Supervised Learning for ConvNets, and Saliency Tells You Where [63.61248884015162]
我々は、畳み込みニューラルネットワークのためのコントラスト学習フレームワークにマスキング操作を組み込むことの負担を軽減することを目的としている。
マスクされた領域が、前景と背景の間に均等に分散されていることを考慮し、塩分濃度の制約を明示的に考慮することを提案する。
論文 参考訳(メタデータ) (2023-09-22T09:58:38Z) - Prompt-based Ingredient-Oriented All-in-One Image Restoration [0.0]
複数の画像劣化課題に対処する新しいデータ成分指向手法を提案する。
具体的には、エンコーダを用いて特徴をキャプチャし、デコーダを誘導するための劣化情報を含むプロンプトを導入する。
我々の手法は最先端技術と競争的に機能する。
論文 参考訳(メタデータ) (2023-09-06T15:05:04Z) - SelfPromer: Self-Prompt Dehazing Transformers with Depth-Consistency [51.92434113232977]
本研究は,画像デハージングに有効な深度整合型セルフプロンプトトランスを提案する。
ヘイズ残像とその明確な像の深さが異なるという観測によって動機づけられた。
VQGANに基づくエンコーダ・デコーダネットワークにプロンプト、プロンプト埋め込み、そしてインタプリタを組み込むことにより、より優れた知覚品質を実現することができる。
論文 参考訳(メタデータ) (2023-03-13T11:47:24Z) - Rich Feature Distillation with Feature Affinity Module for Efficient
Image Dehazing [1.1470070927586016]
この作業は、単一イメージのヘイズ除去のためのシンプルで軽量で効率的なフレームワークを導入します。
我々は、ヘテロジニアス知識蒸留の概念を用いて、軽量な事前学習された超解像モデルから豊富な「暗黒知識」情報を利用する。
本実験は, RESIDE-Standardデータセットを用いて, 合成および実世界のドメインに対する我々のフレームワークの堅牢性を示す。
論文 参考訳(メタデータ) (2022-07-13T18:32:44Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
本稿では,ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とする。
我々は、高解像度の空間的詳細を同時に保存しながら、複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
提案手法は,デフォーカス・デブロアリング,画像デノイング,超解像,画像強調など,さまざまな画像処理タスクに対して,最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2022-04-19T17:59:45Z) - Single Image Dehazing with An Independent Detail-Recovery Network [117.86146907611054]
個別のDetail Recovery Network (DRN) を用いた単一画像デハージング手法を提案する。
DRNは、それぞれのローカルブランチとグローバルブランチを通じて、デハズドイメージの詳細を復元することを目的としている。
本手法は, 定量的, 定性的に, 最先端の脱ハージング法より優れる。
論文 参考訳(メタデータ) (2021-09-22T02:49:43Z) - Contrastive Learning for Compact Single Image Dehazing [41.83007400559068]
コントラスト学習に基づいて構築された新しいコントラスト正規化(CR)を提案し、ヘイズ画像とクリア画像の情報の両方をネガティブかつポジティブなサンプルとして活用する。
CRは、復元された画像が透明な画像に近づき、表現空間のぼやけた画像から遠くへ押し出されることを保証する。
性能とメモリストレージのトレードオフを考慮すると、オートエンコーダのようなフレームワークに基づくコンパクトなデハージングネットワークを開発する。
論文 参考訳(メタデータ) (2021-04-19T14:56:21Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z) - FD-GAN: Generative Adversarial Networks with Fusion-discriminator for
Single Image Dehazing [48.65974971543703]
画像デハージングのためのFusion-Discriminator (FD-GAN) を用いた完全エンドツーエンドのジェネレータネットワークを提案する。
我々のモデルは、より自然でリアルなデハズド画像を生成することができ、色歪みは少なく、アーティファクトも少ない。
実験により, 提案手法は, 公開合成データセットと実世界の画像の両方において, 最先端の性能に達することが示された。
論文 参考訳(メタデータ) (2020-01-20T04:36:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。