BeniFul: Backdoor Defense via Middle Feature Analysis for Deep Neural Networks
- URL: http://arxiv.org/abs/2410.14723v1
- Date: Tue, 15 Oct 2024 13:14:55 GMT
- Title: BeniFul: Backdoor Defense via Middle Feature Analysis for Deep Neural Networks
- Authors: Xinfu Li, Junying Zhang, Xindi Ma,
- Abstract summary: We propose an effective and comprehensive backdoor defense method named BeniFul, which consists of two parts: a gray-box backdoor input detection and a white-box backdoor elimination.
Experimental results on CIFAR-10 and Tiny ImageNet against five state-of-the-art attacks demonstrate that our BeniFul exhibits a great defense capability in backdoor input detection and backdoor elimination.
- Score: 0.6872939325656702
- License:
- Abstract: Backdoor defenses have recently become important in resisting backdoor attacks in deep neural networks (DNNs), where attackers implant backdoors into the DNN model by injecting backdoor samples into the training dataset. Although there are many defense methods to achieve backdoor detection for DNN inputs and backdoor elimination for DNN models, they still have not presented a clear explanation of the relationship between these two missions. In this paper, we use the features from the middle layer of the DNN model to analyze the difference between backdoor and benign samples and propose Backdoor Consistency, which indicates that at least one backdoor exists in the DNN model if the backdoor trigger is detected exactly on input. By analyzing the middle features, we design an effective and comprehensive backdoor defense method named BeniFul, which consists of two parts: a gray-box backdoor input detection and a white-box backdoor elimination. Specifically, we use the reconstruction distance from the Variational Auto-Encoder and model inference results to implement backdoor input detection and a feature distance loss to achieve backdoor elimination. Experimental results on CIFAR-10 and Tiny ImageNet against five state-of-the-art attacks demonstrate that our BeniFul exhibits a great defense capability in backdoor input detection and backdoor elimination.
Related papers
- Expose Before You Defend: Unifying and Enhancing Backdoor Defenses via Exposed Models [68.40324627475499]
We introduce a novel two-step defense framework named Expose Before You Defend.
EBYD unifies existing backdoor defense methods into a comprehensive defense system with enhanced performance.
We conduct extensive experiments on 10 image attacks and 6 text attacks across 2 vision datasets and 4 language datasets.
arXiv Detail & Related papers (2024-10-25T09:36:04Z) - BaDExpert: Extracting Backdoor Functionality for Accurate Backdoor Input
Detection [42.021282816470794]
We present a novel defense, against backdoor attacks on Deep Neural Networks (DNNs)
Our defense falls within the category of post-development defenses that operate independently of how the model was generated.
We show the feasibility of devising highly accurate backdoor input detectors that filter out the backdoor inputs during model inference.
arXiv Detail & Related papers (2023-08-23T21:47:06Z) - Reconstructive Neuron Pruning for Backdoor Defense [96.21882565556072]
We propose a novel defense called emphReconstructive Neuron Pruning (RNP) to expose and prune backdoor neurons.
In RNP, unlearning is operated at the neuron level while recovering is operated at the filter level, forming an asymmetric reconstructive learning procedure.
We show that such an asymmetric process on only a few clean samples can effectively expose and prune the backdoor neurons implanted by a wide range of attacks.
arXiv Detail & Related papers (2023-05-24T08:29:30Z) - Backdoor Defense via Deconfounded Representation Learning [17.28760299048368]
We propose a Causality-inspired Backdoor Defense (CBD) to learn deconfounded representations for reliable classification.
CBD is effective in reducing backdoor threats while maintaining high accuracy in predicting benign samples.
arXiv Detail & Related papers (2023-03-13T02:25:59Z) - BATT: Backdoor Attack with Transformation-based Triggers [72.61840273364311]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
Backdoor adversaries inject hidden backdoors that can be activated by adversary-specified trigger patterns.
One recent research revealed that most of the existing attacks failed in the real physical world.
arXiv Detail & Related papers (2022-11-02T16:03:43Z) - Test-Time Detection of Backdoor Triggers for Poisoned Deep Neural
Networks [24.532269628999025]
Backdoor (Trojan) attacks are emerging threats against deep neural networks (DNN)
In this paper, we propose an "in-flight" defense against backdoor attacks on image classification.
arXiv Detail & Related papers (2021-12-06T20:52:00Z) - AEVA: Black-box Backdoor Detection Using Adversarial Extreme Value
Analysis [23.184335982913325]
We address the black-box hard-label backdoor detection problem.
We show that the objective of backdoor detection is bounded by an adversarial objective.
We propose the adversarial extreme value analysis to detect backdoors in black-box neural networks.
arXiv Detail & Related papers (2021-10-28T04:36:48Z) - Check Your Other Door! Establishing Backdoor Attacks in the Frequency
Domain [80.24811082454367]
We show the advantages of utilizing the frequency domain for establishing undetectable and powerful backdoor attacks.
We also show two possible defences that succeed against frequency-based backdoor attacks and possible ways for the attacker to bypass them.
arXiv Detail & Related papers (2021-09-12T12:44:52Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
We propose a black-box backdoor detection (B3D) method to identify backdoor attacks with only query access to the model.
In addition to backdoor detection, we also propose a simple strategy for reliable predictions using the identified backdoored models.
arXiv Detail & Related papers (2021-03-24T12:06:40Z) - Defending against Backdoor Attack on Deep Neural Networks [98.45955746226106]
We study the so-called textitbackdoor attack, which injects a backdoor trigger to a small portion of training data.
Experiments show that our method could effectively decrease the attack success rate, and also hold a high classification accuracy for clean images.
arXiv Detail & Related papers (2020-02-26T02:03:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.