Tokens on Demand: Token Condensation as Training-free Test-time Adaptation
- URL: http://arxiv.org/abs/2410.14729v1
- Date: Wed, 16 Oct 2024 07:13:35 GMT
- Title: Tokens on Demand: Token Condensation as Training-free Test-time Adaptation
- Authors: Zixin Wang, Dong Gong, Sen Wang, Zi Huang, Yadan Luo,
- Abstract summary: Token Condensation as Adaptation (TCA) is a training-free approach designed to mitigate distribution shifts encountered by vision-language models (VLMs) during test-time inference.
As the first method to explore token efficiency in test-time adaptation, TCA consistently demonstrates superior performance across cross-dataset and out-of-distribution adaptation tasks.
- Score: 43.09801987385207
- License:
- Abstract: In this work, we introduce Token Condensation as Adaptation (TCA), a training-free approach designed to mitigate distribution shifts encountered by vision-language models (VLMs) during test-time inference. TCA bridges distribution gaps at the patch level by condensing image tokens that exhibit low attentiveness to the <cls> token. Recognizing the <cls> token may correspond to universal concepts, TCA identifies and tracks the most reliable <cls> tokens that align specifically with target classes from historical data streams. To achieve this, we propose a context token reservoir (CTR), which retains tokens with the lowest uncertainty as ``anchors" to guide the preservation of class-relevant tokens during inference. These anchors, in turn, act as token-level classifiers to correct VLM predictions and improve visual-text alignment. Utilizing anchors sampled from CTR, TCA condenses tokens through two operations: (1) pruning class-irrelevant tokens that consistently rank low across all attention heads to reach cross-head consensus on their irrelevance, and (2) merging the remaining class-ambiguous tokens into representative centers using coreset selection, maintaining linear computational complexity. As the first method to explore token efficiency in test-time adaptation, TCA consistently demonstrates superior performance across cross-dataset and out-of-distribution adaptation tasks, reducing GFLOPs by 12.2% to 48.9% while achieving accuracy improvements up to 21.4% against the strongest baseline without introducing additional parameters.
Related papers
- ToSA: Token Selective Attention for Efficient Vision Transformers [50.13756218204456]
ToSA is a token selective attention approach that can identify tokens that need to be attended as well as those that can skip a transformer layer.
We show that ToSA can significantly reduce computation costs while maintaining accuracy on the ImageNet classification benchmark.
arXiv Detail & Related papers (2024-06-13T05:17:21Z) - SEP: Self-Enhanced Prompt Tuning for Visual-Language Model [68.68025991850115]
We introduce a novel approach named Self-Enhanced Prompt Tuning (SEP)
SEP explicitly incorporates discriminative prior knowledge to enhance both textual-level and visual-level embeddings.
Comprehensive evaluations across various benchmarks and tasks confirm SEP's efficacy in prompt tuning.
arXiv Detail & Related papers (2024-05-24T13:35:56Z) - Semantic Equitable Clustering: A Simple, Fast and Effective Strategy for Vision Transformer [57.37893387775829]
We introduce a fast and balanced clustering method, named textbfSemantic textbfEquitable textbfClustering (SEC)
SEC clusters tokens based on their global semantic relevance in an efficient, straightforward manner.
We propose a versatile vision backbone, SecViT, which attains an impressive textbf84.2% image classification accuracy with only textbf27M parameters and textbf4.4G FLOPs.
arXiv Detail & Related papers (2024-05-22T04:49:00Z) - Token Sparsification for Faster Medical Image Segmentation [37.25161294917211]
We reformulate segmentation as a sparse encoding -> token completion -> dense decoding (SCD) pipeline.
STP predicts importance scores with a lightweight sub-network and samples the topK tokens.
MTA restores a full token sequence by assembling both sparse output tokens and pruned multi-layer intermediate ones.
arXiv Detail & Related papers (2023-03-11T23:59:13Z) - Token-Label Alignment for Vision Transformers [93.58540411138164]
Data mixing strategies (e.g., CutMix) have shown the ability to greatly improve the performance of convolutional neural networks (CNNs)
We identify a token fluctuation phenomenon that has suppressed the potential of data mixing strategies.
We propose a token-label alignment (TL-Align) method to trace the correspondence between transformed tokens and the original tokens to maintain a label for each token.
arXiv Detail & Related papers (2022-10-12T17:54:32Z) - Adaptive Sparse ViT: Towards Learnable Adaptive Token Pruning by Fully
Exploiting Self-Attention [36.90363317158731]
We propose an adaptive sparse token pruning framework with a minimal cost.
Our method improves the throughput of DeiT-S by 50% and brings only 0.2% drop in top-1 accuracy.
arXiv Detail & Related papers (2022-09-28T03:07:32Z) - Cross-domain Speech Recognition with Unsupervised Character-level
Distribution Matching [60.8427677151492]
We propose CMatch, a Character-level distribution matching method to perform fine-grained adaptation between each character in two domains.
Experiments on the Libri-Adapt dataset show that our proposed approach achieves 14.39% and 16.50% relative Word Error Rate (WER) reduction on both cross-device and cross-environment ASR.
arXiv Detail & Related papers (2021-04-15T14:36:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.