論文の概要: Machine Learning Aided Modeling of Granular Materials: A Review
- arxiv url: http://arxiv.org/abs/2410.14767v1
- Date: Fri, 18 Oct 2024 15:53:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:15:51.730304
- Title: Machine Learning Aided Modeling of Granular Materials: A Review
- Title(参考訳): グラニュラー材料のモデリングを支援する機械学習
- Authors: Mengqi Wang, Krishna Kumar, Y. T. Feng, Tongming Qu, Min Wang,
- Abstract要約: AIの幅広いカテゴリのサブセットとしての機械学習は、粒状材料の研究コミュニティでかなりの注目を集めている。
この研究は、粒状物質の機械学習支援研究における最近の進歩の詳細なレビューを提供する。
粒状物質の挙動を学習するための異なるニューラルネットワークをレビューし、比較する。
ニューラルネットワークと数値計算を組み合わせた実用工学・境界値問題のマクロシミュレーションについて論じる。
- 参考スコア(独自算出の注目度): 3.8914237516698726
- License:
- Abstract: Artificial intelligence (AI) has become a buzz word since Google's AlphaGo beat a world champion in 2017. In the past five years, machine learning as a subset of the broader category of AI has obtained considerable attention in the research community of granular materials. This work offers a detailed review of the recent advances in machine learning-aided studies of granular materials from the particle-particle interaction at the grain level to the macroscopic simulations of granular flow. This work will start with the application of machine learning in the microscopic particle-particle interaction and associated contact models. Then, different neural networks for learning the constitutive behaviour of granular materials will be reviewed and compared. Finally, the macroscopic simulations of practical engineering or boundary value problems based on the combination of neural networks and numerical methods are discussed. We hope readers will have a clear idea of the development of machine learning-aided modelling of granular materials via this comprehensive review work.
- Abstract(参考訳): 人工知能(AI)は、GoogleのAlphaGoが2017年に世界チャンピオンを破って以来、バズワードになっている。
過去5年間で、AIの幅広いカテゴリのサブセットとしての機械学習は、粒状材料の研究コミュニティでかなりの注目を集めてきた。
本研究は、粒度レベルの粒子-粒子相互作用から粒状流れのマクロシミュレーションまで、機械学習支援による粒状物質の研究の最近の進歩を詳述する。
この研究は、顕微鏡粒子-粒子相互作用と関連する接触モデルにおける機械学習の適用から始まる。
次に、粒状物質の構成的挙動を学習するための異なるニューラルネットワークをレビューし、比較する。
最後に,ニューラルネットワークと数値計算を組み合わせた実用工学・境界値問題のマクロシミュレーションについて述べる。
読者は、この包括的なレビュー作業を通じて、粒状物質の機械学習支援モデルの開発について、明確なアイデアを得られることを願っている。
関連論文リスト
- Learning Manipulation by Predicting Interaction [85.57297574510507]
本稿では,インタラクションを予測して操作を学習する一般的な事前学習パイプラインを提案する。
実験の結果,MPIは従来のロボットプラットフォームと比較して10%から64%向上していることがわかった。
論文 参考訳(メタデータ) (2024-06-01T13:28:31Z) - Obtaining physical layer data of latest generation networks for investigating adversary attacks [0.0]
機械学習は、5Gや6Gといった最新世代のデータネットワークの機能の最適化に使用できる。
インテリジェント機械学習モデルの振る舞いを操作する敵対策が、大きな関心事になりつつある。
機械学習アプリケーションと連携して動作するシミュレーションモデルを提案する。
論文 参考訳(メタデータ) (2024-05-02T06:03:27Z) - Graph Neural Networks-based Hybrid Framework For Predicting Particle
Crushing Strength [31.05985193732974]
粒子破砕の機械的挙動を特徴付けるためにグラフニューラルネットワークを用いる。
我々は,粒状フラグメントビューにおける粒子破砕強度を予測するために,GNNに基づくハイブリッドフレームワークを考案した。
我々のデータとコードはhttps://github.com/doujiang-zheng/GNN-For-Particle-Crushingで公開されています。
論文 参考訳(メタデータ) (2023-07-26T02:18:04Z) - Granular-ball computing: an efficient, robust, and interpretable
adaptive multi-granularity representation and computation method [54.2899493638937]
人間の認知は「グローバルファースト」認知メカニズムで動作し、粗い詳細に基づいて情報処理を優先順位付けする。
解析パターンは、最も微細な粒度と単一粒度に依存するため、既存の計算手法のほとんどは効率が悪く、堅牢で、解釈可能である。
多粒度グラニュラーボールコンピューティングは、サンプル空間を適度に表現し包み込むために、様々な大きさのグラニュラーボールを使用する。
グラニュラーボールコンピューティングは、AIにおいてまれで革新的な理論的アプローチであり、効率性、堅牢性、解釈可能性を適応的かつ同時に向上させることができる。
論文 参考訳(メタデータ) (2023-04-21T03:26:29Z) - Learning Physics-Consistent Particle Interactions [3.9686511558236055]
本稿では,グラフネットワークフレームワークを適応させるアルゴリズムを提案する。このアルゴリズムは,一対の相互作用を学習するためのエッジ部分と,粒子レベルでのダイナミクスをモデル化するためのノード部分を含む。
提案手法を複数のデータセット上で検証し、ペアの相互作用を正確に推定する際の性能がかなり向上することを示した。
論文 参考訳(メタデータ) (2022-02-01T09:59:53Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
機械学習は、データのパターンを認識し、予測モデリングに使用するアルゴリズムの開発と応用に関係している。
ディープラーニングは、独自の機械学習のサブフィールドになっている。
生物学的研究の文脈において、ディープラーニングは高次元の生物学的データから新しい洞察を導き出すためにますます使われてきた。
論文 参考訳(メタデータ) (2021-05-29T21:02:44Z) - Learning 3D Granular Flow Simulations [6.308272531414633]
離散要素法LIGGGHTSにより生成された複雑な3次元粒状流シミュレーションプロセスの正確なモデリングに向けたグラフニューラルネットワークアプローチを提案する。
本稿では,3次元物体,境界条件,粒子-粒子,粒子-境界相互作用を扱うグラフニューラルネットワークの実装方法について論じる。
論文 参考訳(メタデータ) (2021-05-04T17:27:59Z) - A Survey on Semi-parametric Machine Learning Technique for Time Series
Forecasting [4.9341230675162215]
Grey Machine Learning(GML)は、大きなデータセットと、可能性のある結果を予測する時系列用の小さなデータセットを扱うことができる。
本稿では,時系列予測のための半パラメトリック機械学習技術の概要を概観する。
論文 参考訳(メタデータ) (2021-04-02T03:26:20Z) - Measuring and modeling the motor system with machine learning [117.44028458220427]
モーターシステムの理解における機械学習の有用性は、データの収集、測定、分析の方法に革命をもたらすことを約束している。
本稿では, ポーズ推定, 運動解析, 次元減少, 閉ループフィードバックから, ニューラル相関の理解, 機能停止まで, 機械学習の利用の増大について論じる。
論文 参考訳(メタデータ) (2021-03-22T12:42:16Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。