論文の概要: Effects of Soft-Domain Transfer and Named Entity Information on Deception Detection
- arxiv url: http://arxiv.org/abs/2410.14814v1
- Date: Fri, 18 Oct 2024 18:35:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:20:50.153689
- Title: Effects of Soft-Domain Transfer and Named Entity Information on Deception Detection
- Title(参考訳): 欠陥検出におけるソフトドメイン転送と名前付きエンティティ情報の影響
- Authors: Steven Triplett, Simon Minami, Rakesh Verma,
- Abstract要約: 偽造はいくつかのテキストのみのドメインで起こる。
8つのデータセットを用いて分類器の性能を評価する。
精度は11.2%まで向上した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In the modern age an enormous amount of communication occurs online, and it is difficult to know when something written is genuine or deceitful. There are many reasons for someone to deceive online (e.g., monetary gain, political gain) and detecting this behavior without any physical interaction is a difficult task. Additionally, deception occurs in several text-only domains and it is unclear if these various sources can be leveraged to improve detection. To address this, eight datasets were utilized from various domains to evaluate their effect on classifier performance when combined with transfer learning via intermediate layer concatenation of fine-tuned BERT models. We find improvements in accuracy over the baseline. Furthermore, we evaluate multiple distance measurements between datasets and find that Jensen-Shannon distance correlates moderately with transfer learning performance. Finally, the impact was evaluated of multiple methods, which produce additional information in a dataset's text via named entities, on BERT performance and we find notable improvement in accuracy of up to 11.2%.
- Abstract(参考訳): 現代では、膨大な量のコミュニケーションがオンラインで行われ、書かれたものがいつ本物か、それとも偽物であるかを知ることは困難である。
誰かがオンラインで騙し(例えば、金銭的利得、政治的利得)、物理的な相互作用を伴わずにこの行動を検出することは難しい作業である。
さらに、いくつかのテキストのみのドメインで偽造が発生しており、これらの様々なソースが検出を改善するために活用できるかどうかは不明である。
これを解決するために、様々なドメインから8つのデータセットを用いて、微調整BERTモデルの中間層結合による転写学習と組み合わせて、分類器の性能を評価する。
ベースラインよりも精度が向上している。
さらに,データセット間の複数距離測定を評価し,Jensen-Shannon距離が伝達学習性能と適度に相関していることを確認した。
最後に、BERTのパフォーマンスに対するデータセットのテキストに追加情報を生成する複数の手法の評価を行い、最大11.2%の精度で顕著な改善が得られた。
関連論文リスト
- Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
本稿では、下流知識と事前学習指導のデータ相互作用をトレースするダウンストリーム・プレテキスト・ドメイン知識トレース(DOKT)手法を提案する。
DOKTは、トレースバックの多様性指標とドメインベースの不確実性推定器から構成される。
10のデータセットで行った実験は、我々のモデルが他の最先端の手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2024-07-20T01:34:13Z) - How to Train Your Fact Verifier: Knowledge Transfer with Multimodal Open Models [95.44559524735308]
大規模言語またはマルチモーダルモデルに基づく検証は、偽コンテンツや有害コンテンツの拡散を緩和するためのオンラインポリシングメカニズムをスケールアップするために提案されている。
我々は,知識伝達の初期研究を通じて,継続的な更新を行うことなく基礎モデルの性能向上の限界をテストする。
最近の2つのマルチモーダルなファクトチェックベンチマークであるMochegとFakedditの結果は、知識伝達戦略がファクドディットのパフォーマンスを最先端よりも1.7%向上し、Mochegのパフォーマンスを2.9%向上させることができることを示唆している。
論文 参考訳(メタデータ) (2024-06-29T08:39:07Z) - Transferable and Efficient Non-Factual Content Detection via Probe Training with Offline Consistency Checking [48.68044413117397]
PINOSEは、オフラインの自己整合性検査結果に基づいて探索モデルをトレーニングし、人間の注釈付きデータの必要性を回避する。
応答復号に先立って内部状態の様々な側面を調べ、事実的不正確な検出に寄与する。
論文 参考訳(メタデータ) (2024-04-10T05:00:35Z) - Data Quality in Imitation Learning [15.939363481618738]
ロボット工学のオフライン学習では、インターネットのスケールデータがないだけで、高品質なデータセットが必要なのです。
これは特に、専門家によるデモンストレーションを用いたロボット学習のためのサンプル効率のよいパラダイムである模倣学習(IL)において当てはまる。
本研究では,分散シフトのレンズによる模倣学習のためのデータ品質の形式化に向けた第一歩を踏み出す。
論文 参考訳(メタデータ) (2023-06-04T18:48:32Z) - A Data-Based Perspective on Transfer Learning [76.30206800557411]
転送学習におけるソースデータセットの合成の役割について,より詳しく検討する。
我々のフレームワークは、転送学習の脆さをピンポインティングするなど、新しい機能を生み出します。
論文 参考訳(メタデータ) (2022-07-12T17:58:28Z) - Detection Hub: Unifying Object Detection Datasets via Query Adaptation
on Language Embedding [137.3719377780593]
新しいデザイン(De Detection Hubという名前)は、データセット認識とカテゴリ整列である。
データセットの不整合を緩和し、検出器が複数のデータセットをまたいで学習するための一貫性のあるガイダンスを提供する。
データセット間のカテゴリは、ワンホットなカテゴリ表現を単語埋め込みに置き換えることで、意味的に統一された空間に整列される。
論文 参考訳(メタデータ) (2022-06-07T17:59:44Z) - Revisiting Mahalanobis Distance for Transformer-Based Out-of-Domain
Detection [60.88952532574564]
本稿では,ドメイン外インテント検出手法を徹底的に比較する。
意図分類のための3つの標準データセット上で,複数のコンテキストエンコーダとメソッドを効率良く評価する。
本研究の主目的は,超微調整トランスフォーマーを用いたドメイン内データエンコーダが優れた結果をもたらすことである。
論文 参考訳(メタデータ) (2021-01-11T09:10:58Z) - Flexible deep transfer learning by separate feature embeddings and
manifold alignment [0.0]
オブジェクト認識は、業界と防衛において重要な存在である。
残念ながら、既存のラベル付きデータセットでトレーニングされたアルゴリズムは、データ分布が一致しないため、直接新しいデータに一般化しない。
本稿では,各領域の特徴抽出を個別に学習することで,この制限を克服する新しいディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-12-22T19:24:44Z) - Overcoming Conflicting Data when Updating a Neural Semantic Parser [5.471925005642665]
タスク指向のセマンティックパースモデルを更新するために、いくつかの例で所望の出力が変更されたときに、少量の新しいデータをどのように使うかを示す。
このような方法で更新を行う場合、潜在的な問題の1つは、競合するデータの存在である。
矛盾するデータの存在が更新の学習を著しく妨げていることを示し、その影響を軽減するためにいくつかの方法を模索する。
論文 参考訳(メタデータ) (2020-10-23T21:19:03Z) - Synthetic-to-Real Unsupervised Domain Adaptation for Scene Text
Detection in the Wild [11.045516338817132]
シーンテキスト検出のための合成領域適応手法を提案する。
ドメイン適応シーンテキスト検出のためのテキスト自己学習(TST)法と逆テキストインスタンスアライメント(ATA)を導入する。
その結果,提案手法の有効性を最大10%改善した。
論文 参考訳(メタデータ) (2020-09-03T16:16:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。