Automated Road Extraction from Satellite Imagery Integrating Dense Depthwise Dilated Separable Spatial Pyramid Pooling with DeepLabV3+
- URL: http://arxiv.org/abs/2410.14836v1
- Date: Fri, 18 Oct 2024 19:14:07 GMT
- Title: Automated Road Extraction from Satellite Imagery Integrating Dense Depthwise Dilated Separable Spatial Pyramid Pooling with DeepLabV3+
- Authors: Arpan Mahara, Md Rezaul Karim Khan, Naphtali D. Rishe, Wenjia Wang, Seyed Masoud Sadjadi,
- Abstract summary: Road Extraction is a sub-domain of Remote Sensing applications.
The DeepLab series, known for its proficiency in semantic segmentation, addresses some of these challenges caused by the varying nature of roads.
This study hypothesizes that the integration of DenseDDSSPP, combined with an appropriately selected backbone network and a Squeeze-and-Excitation block, will generate an efficient dense feature map.
- Score: 6.938896632981995
- License:
- Abstract: Road Extraction is a sub-domain of Remote Sensing applications; it is a subject of extensive and ongoing research. The procedure of automatically extracting roads from satellite imagery encounters significant challenges due to the multi-scale and diverse structures of roads; improvement in this field is needed. The DeepLab series, known for its proficiency in semantic segmentation due to its efficiency in interpreting multi-scale objects' features, addresses some of these challenges caused by the varying nature of roads. The present work proposes the utilization of DeepLabV3+, the latest version of the DeepLab series, by introducing an innovative Dense Depthwise Dilated Separable Spatial Pyramid Pooling (DenseDDSSPP) module and integrating it in place of the conventional Atrous Spatial Pyramid Pooling (ASPP) module. This modification enhances the extraction of complex road structures from satellite images. This study hypothesizes that the integration of DenseDDSSPP, combined with an appropriately selected backbone network and a Squeeze-and-Excitation block, will generate an efficient dense feature map by focusing on relevant features, leading to more precise and accurate road extraction from Remote Sensing images. The results section presents a comparison of our model's performance against state-of-the-art models, demonstrating better results that highlight the effectiveness and success of the proposed approach.
Related papers
- MultiScale Probability Map guided Index Pooling with Attention-based
learning for Road and Building Segmentation [18.838213902873616]
We propose a novel attention-aware segmentation framework, Multi-Scale Supervised Dilated Multiple-Path Attention Network (MSSDMPA-Net)
MSSDMPA-Net is equipped with two new modules Dynamic Attention Map Guided Index Pooling (DAMIP) and Dynamic Attention Map Guided Spatial and Channel Attention (DAMSCA) to precisely extract the building footprints and road maps from remotely sensed images.
arXiv Detail & Related papers (2023-02-18T19:57:25Z) - Learning Continuous Depth Representation via Geometric Spatial
Aggregator [47.1698365486215]
We propose a novel continuous depth representation for depth map super-resolution (DSR)
The heart of this representation is our proposed Geometric Spatial Aggregator (GSA), which exploits a distance field modulated by arbitrarily upsampled target gridding.
We also present a transformer-style backbone named GeoDSR, which possesses a principled way to construct the functional mapping between local coordinates.
arXiv Detail & Related papers (2022-12-07T07:48:23Z) - HiMODE: A Hybrid Monocular Omnidirectional Depth Estimation Model [3.5290359800552946]
HiMODE is a novel monocular omnidirectional depth estimation model based on a CNN+Transformer architecture.
We show that HiMODE can achieve state-of-the-art performance for 360deg monocular depth estimation.
arXiv Detail & Related papers (2022-04-11T11:11:43Z) - Joint Learning of Salient Object Detection, Depth Estimation and Contour
Extraction [91.43066633305662]
We propose a novel multi-task and multi-modal filtered transformer (MMFT) network for RGB-D salient object detection (SOD)
Specifically, we unify three complementary tasks: depth estimation, salient object detection and contour estimation. The multi-task mechanism promotes the model to learn the task-aware features from the auxiliary tasks.
Experiments show that it not only significantly surpasses the depth-based RGB-D SOD methods on multiple datasets, but also precisely predicts a high-quality depth map and salient contour at the same time.
arXiv Detail & Related papers (2022-03-09T17:20:18Z) - SPIN Road Mapper: Extracting Roads from Aerial Images via Spatial and
Interaction Space Graph Reasoning for Autonomous Driving [64.10636296274168]
Road extraction is an essential step in building autonomous navigation systems.
Using just convolution neural networks (ConvNets) for this problem is not effective as it is inefficient at capturing distant dependencies between road segments in the image.
We propose a Spatial and Interaction Space Graph Reasoning (SPIN) module which when plugged into a ConvNet performs reasoning over graphs constructed on spatial and interaction spaces projected from the feature maps.
arXiv Detail & Related papers (2021-09-16T03:52:17Z) - Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images
with Virtual Depth [64.29043589521308]
We propose a rendering module to augment the training data by synthesizing images with virtual-depths.
The rendering module takes as input the RGB image and its corresponding sparse depth image, outputs a variety of photo-realistic synthetic images.
Besides, we introduce an auxiliary module to improve the detection model by jointly optimizing it through a depth estimation task.
arXiv Detail & Related papers (2021-07-28T11:00:47Z) - Monocular 3D Object Detection with Sequential Feature Association and
Depth Hint Augmentation [12.55603878441083]
FADNet is presented to address the task of monocular 3D object detection.
A dedicated depth hint module is designed to generate row-wise features named as depth hints.
The contributions of this work are validated by conducting experiments and ablation study on the KITTI benchmark.
arXiv Detail & Related papers (2020-11-30T07:19:14Z) - PP-LinkNet: Improving Semantic Segmentation of High Resolution Satellite
Imagery with Multi-stage Training [4.694536172504848]
Road network and building footprint extraction is essential for many applications such as updating maps, traffic regulations, city planning, ride-hailing, disaster response textitetc.
arXiv Detail & Related papers (2020-10-14T10:23:48Z) - Real-Time High-Performance Semantic Image Segmentation of Urban Street
Scenes [98.65457534223539]
We propose a real-time high-performance DCNN-based method for robust semantic segmentation of urban street scenes.
The proposed method achieves the accuracy of 73.6% and 68.0% mean Intersection over Union (mIoU) with the inference speed of 51.0 fps and 39.3 fps.
arXiv Detail & Related papers (2020-03-11T08:45:53Z) - siaNMS: Non-Maximum Suppression with Siamese Networks for Multi-Camera
3D Object Detection [65.03384167873564]
A siamese network is integrated into the pipeline of a well-known 3D object detector approach.
associations are exploited to enhance the 3D box regression of the object.
The experimental evaluation on the nuScenes dataset shows that the proposed method outperforms traditional NMS approaches.
arXiv Detail & Related papers (2020-02-19T15:32:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.