論文の概要: A Hybrid Defense Strategy for Boosting Adversarial Robustness in Vision-Language Models
- arxiv url: http://arxiv.org/abs/2410.14911v1
- Date: Fri, 18 Oct 2024 23:47:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:22:31.015944
- Title: A Hybrid Defense Strategy for Boosting Adversarial Robustness in Vision-Language Models
- Title(参考訳): 視覚・言語モデルにおける対向ロバスト性向上のためのハイブリッド防衛戦略
- Authors: Yuhan Liang, Yijun Li, Yumeng Niu, Qianhe Shen, Hangyu Liu,
- Abstract要約: 本稿では,複数の攻撃戦略と高度な機械学習技術を統合した,新たな敵訓練フレームワークを提案する。
CIFAR-10 や CIFAR-100 などの実世界のデータセットで行った実験により,提案手法がモデルロバスト性を大幅に向上することを示した。
- 参考スコア(独自算出の注目度): 9.304845676825584
- License:
- Abstract: The robustness of Vision-Language Models (VLMs) such as CLIP is critical for their deployment in safety-critical applications like autonomous driving, healthcare diagnostics, and security systems, where accurate interpretation of visual and textual data is essential. However, these models are highly susceptible to adversarial attacks, which can severely compromise their performance and reliability in real-world scenarios. Previous methods have primarily focused on improving robustness through adversarial training and generating adversarial examples using models like FGSM, AutoAttack, and DeepFool. However, these approaches often rely on strong assumptions, such as fixed perturbation norms or predefined attack patterns, and involve high computational complexity, making them challenging to implement in practical settings. In this paper, we propose a novel adversarial training framework that integrates multiple attack strategies and advanced machine learning techniques to significantly enhance the robustness of VLMs against a broad range of adversarial attacks. Experiments conducted on real-world datasets, including CIFAR-10 and CIFAR-100, demonstrate that the proposed method significantly enhances model robustness. The fine-tuned CLIP model achieved an accuracy of 43.5% on adversarially perturbed images, compared to only 4% for the baseline model. The neural network model achieved a high accuracy of 98% in these challenging classification tasks, while the XGBoost model reached a success rate of 85.26% in prediction tasks.
- Abstract(参考訳): CLIPのようなビジョンランゲージモデル(VLM)の堅牢性は、視覚的およびテキストデータの正確な解釈が不可欠である自律運転、医療診断、セキュリティシステムといった安全クリティカルなアプリケーションへの展開に不可欠である。
しかし、これらのモデルは、現実のシナリオにおける彼らのパフォーマンスと信頼性を著しく損なう可能性のある敵攻撃に非常に敏感である。
従来の手法は主に、FGSM、AutoAttack、DeepFoolといったモデルを使用して、敵のトレーニングと敵の例を生成することによって堅牢性を改善することに焦点を当てていた。
しかしながら、これらのアプローチは、固定摂動規範や事前定義された攻撃パターンのような強い仮定に頼り、高い計算複雑性を伴い、実践的な環境では実装が困難である。
本稿では,複数の攻撃戦略と高度な機械学習技術を統合して,広範囲な敵攻撃に対するVLMの堅牢性を大幅に向上させる,新たな敵訓練フレームワークを提案する。
CIFAR-10 や CIFAR-100 などの実世界のデータセットで行った実験により,提案手法がモデルロバスト性を大幅に向上することを示した。
微調整のCLIPモデルは、逆摂動画像では43.5%の精度を達成し、ベースラインモデルでは4%に留まった。
ニューラルネットワークモデルはこれらの困難な分類タスクで98%の精度を達成し、XGBoostモデルは予測タスクで85.26%の成功率に達した。
関連論文リスト
- Hyper Adversarial Tuning for Boosting Adversarial Robustness of Pretrained Large Vision Models [9.762046320216005]
大きな視覚モデルは敵の例に弱いことが分かっており、敵の強靭性を高める必要性を強調している。
近年の研究では、大規模視覚モデルにおけるローランク適応(LoRA)の逆調整のような堅牢な微調整法が提案されているが、完全なパラメータ逆微調整の精度の一致に苦慮している。
本稿では,モデルロバスト性を効率的にかつ効率的に向上するために,異なる手法間で共有された防御知識を活用するハイパー対戦チューニング(HyperAT)を提案する。
論文 参考訳(メタデータ) (2024-10-08T12:05:01Z) - Exploring the Interplay of Interpretability and Robustness in Deep Neural Networks: A Saliency-guided Approach [3.962831477787584]
敵対的攻撃は、ディープラーニングモデルを安全クリティカルなアプリケーションにデプロイする上で大きな課題となる。
モデルの堅牢性を維持しながら解釈可能性を確保することは、これらのモデルの信頼と理解を促進する上で不可欠である。
本研究では,Saliency-Guided Trainingがモデルロバスト性に及ぼす影響について検討した。
論文 参考訳(メタデータ) (2024-05-10T07:21:03Z) - Improving the Robustness of Object Detection and Classification AI models against Adversarial Patch Attacks [2.963101656293054]
我々は攻撃手法を解析し、堅牢な防御手法を提案する。
我々は,物体形状,テクスチャ,位置を利用する逆パッチ攻撃を用いて,モデル信頼度を20%以上下げることに成功した。
敵攻撃にも拘わらず,本手法はモデルレジリエンスを著しく向上させ,高精度かつ信頼性の高いローカライゼーションを実現している。
論文 参考訳(メタデータ) (2024-03-04T13:32:48Z) - Pre-trained Model Guided Fine-Tuning for Zero-Shot Adversarial Robustness [52.9493817508055]
我々は,モデルがゼロショットの逆方向のロバスト性を高めるために,事前訓練されたモデル誘導逆方向の微調整(PMG-AFT)を提案する。
私たちのアプローチは、平均8.72%のクリーンな精度を継続的に改善します。
論文 参考訳(メタデータ) (2024-01-09T04:33:03Z) - Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
敵対的訓練(AT)は、ディープラーニングモデルの堅牢性を固める上で重要な要素である。
AT方式は、目標モデルの防御のために直接反復的な更新を頼りにしており、不安定な訓練や破滅的なオーバーフィッティングといった障害に頻繁に遭遇する。
汎用プロキシガイド型防衛フレームワークLAST(bf Pbf astから学ぶ)を提案する。
論文 参考訳(メタデータ) (2023-10-19T13:13:41Z) - Self-Ensemble Adversarial Training for Improved Robustness [14.244311026737666]
敵の訓練は、あらゆる種類の防衛方法において、様々な敵の攻撃に対する最強の戦略である。
最近の研究は主に新しい損失関数や正規化器の開発に重点を置いており、重み空間の特異な最適点を見つけようとしている。
我々は,歴史モデルの重みを平均化し,頑健な分類器を生成するための,単純だが強力なemphSelf-Ensemble Adversarial Training (SEAT)法を考案した。
論文 参考訳(メタデータ) (2022-03-18T01:12:18Z) - Interpolated Joint Space Adversarial Training for Robust and
Generalizable Defenses [82.3052187788609]
敵の訓練(AT)は、敵の攻撃に対する最も信頼できる防御の1つと考えられている。
近年の研究では、新たな脅威モデルの下での対向サンプルによる一般化の改善が示されている。
我々は、JSTM(Joint Space Threat Model)と呼ばれる新しい脅威モデルを提案する。
JSTMでは,新たな敵攻撃・防衛手法が開発されている。
論文 参考訳(メタデータ) (2021-12-12T21:08:14Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Adversarial Feature Stacking for Accurate and Robust Predictions [4.208059346198116]
Adversarial Feature Stacking (AFS)モデルは、さまざまなレベルの堅牢性と精度を持つ機能を共同で活用することができる。
CIFAR-10およびCIFAR-100データセット上でのAFSモデルの評価を行った。
論文 参考訳(メタデータ) (2021-03-24T12:01:24Z) - Voting based ensemble improves robustness of defensive models [82.70303474487105]
我々は、より堅牢性を高めるためのアンサンブルを作ることができるかどうか研究する。
最先端の先制防衛モデルを複数組み合わせることで,59.8%の堅牢な精度を達成できる。
論文 参考訳(メタデータ) (2020-11-28T00:08:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。